GCE: 503, Analysis and measure theory
 August 2016

No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:
Suppose that u is a real-valued function defined on $[0,1]$, that $u \geq 0$ and that $u \in L^{1}([0,1])$. Define $E_{n}:=\{x \in[0,1]: n-1 \leq u(x) \leq n\}$ for each positive integer n. Show that

$$
\sum_{n=1}^{+\infty} n\left|E_{n}\right|<+\infty
$$

Exercise 2:
Show that a subset E of a metric space X is open if and only if there is a continuous realvalued function f on X such that $E=\{x \in X: f(x)>0\}$.

Exercise 3:

Consider the sequence of functions $\left\{f_{n}\right\}$ defined on the non-negative reals: $[0,+\infty)$ where $f_{n}(x)=2 n x e^{-n x^{2}}$. Let g be a continuous and bounded function on $[0,+\infty)$ valued in \mathbb{R}.

1. Find, with proof,

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(t) g(t) d t
$$

2. Define for x in $[0,+\infty)$,

$$
g_{n}(x)=\int_{0}^{\infty} f_{n}(t) g(x+t) d t
$$

Assuming g is zero outside the interval $[0, M]$, where $M>0$, does the sequence g_{n} have a limit in $L^{1}([0,+\infty))$?
3. If h is in $L^{1}([0,+\infty))$, define for x in $[0,+\infty)$,

$$
h_{n}(x)=\int_{0}^{\infty} f_{n}(t) h(x+t) d t .
$$

Show that h_{n} is measurable on $[0,+\infty)$ and is in $L^{1}([0,+\infty))$.
4. Find, if it exists, with proof, the limit of h_{n} in $L^{1}([0,+\infty))$.

Exercise 4:

Show that a set $E \subset \mathbb{R}$ is Lebesgue measurable if and only if $E=H \cup Z$ where H is a countable union of closed sets and Z has measure zero. You may use the following poperty: for any Lebesgue measurable subset A of \mathbb{R} and any $\epsilon>0$, there is a closed subset F of \mathbb{R} such that $F \subset A$ and the measure of $A \backslash F$ is less than ϵ.

Exercise 5:

Give an example of a sequence f_{n} in $L^{1}(0,1)$ such that $f_{n} \rightarrow 0$ in $L^{1}(0,1)$ but f_{n} does not converge to zero almost everywhere.

