GCE: 503, Analysis and measure theory August 2016 No documents, no calculators allowed Write your name on each page you turn in

<u>Exercise 1</u>:

Suppose that u is a real-valued function defined on [0, 1], that $u \ge 0$ and that $u \in L^1([0, 1])$. Define $E_n := \{x \in [0, 1] : n - 1 \le u(x) \le n\}$ for each positive integer n. Show that

$$\sum_{n=1}^{+\infty} n \left| E_n \right| < +\infty \; .$$

<u>Exercise 2</u>:

Show that a subset E of a metric space X is open if and only if there is a continuous real-valued function f on X such that $E = \{x \in X : f(x) > 0\}.$

Exercise 3:

Consider the sequence of functions $\{f_n\}$ defined on the non-negative reals: $[0, +\infty)$ where $f_n(x) = 2nxe^{-nx^2}$. Let g be a continuous and bounded function on $[0, +\infty)$ valued in \mathbb{R} .

1. Find, with proof,

$$\lim_{n \to \infty} \int_0^\infty f_n(t)g(t)dt$$

2. Define for x in $[0, +\infty)$,

$$g_n(x) = \int_0^\infty f_n(t)g(x+t)dt.$$

Assuming g is zero outside the interval [0, M], where M > 0, does the sequence g_n have a limit in $L^1([0, +\infty))$?

3. If h is in $L^1([0, +\infty))$, define for x in $[0, +\infty)$,

$$h_n(x) = \int_0^\infty f_n(t)h(x+t)dt.$$

Show that h_n is measurable on $[0, +\infty)$ and is in $L^1([0, +\infty))$.

4. Find, if it exists, with proof, the limit of h_n in $L^1([0, +\infty))$.

Exercise 4:

Show that a set $E \subset \mathbb{R}$ is Lebesgue measurable if and only if $E = H \cup Z$ where H is a countable union of closed sets and Z has measure zero. You may use the following poperty: for any Lebesgue measurable subset A of \mathbb{R} and any $\epsilon > 0$, there is a closed subset F of \mathbb{R} such that $F \subset A$ and the measure of $A \setminus F$ is less than ϵ .

Exercise 5:

Give an example of a sequence f_n in $L^1(0,1)$ such that $f_n \to 0$ in $L^1(0,1)$ but f_n does not converge to zero almost everywhere.