# GCE: Analysis, measure theory, Lebesgue integration January 2016 <br> No documents, no calculators allowed Write your name on each page you turn in 

Exercise 1:
Let $f_{n}$ be a sequence of continuous functions from $[0,1]$ to $\mathbb{R}$ which is uniformly convergent. Let $x_{n}$ be in $[0,1]$ such that $f_{n}\left(x_{n}\right) \geq f_{n}(x)$, for all $x$ in $[0,1]$.
(i). Is the sequence $x_{n}$ convergent?
(ii). Show that the sequence $f_{n}\left(x_{n}\right)$ is convergent.

## Exercise 2:

Let $\mathbb{I}$ be the set of all irrational real numbers $(\mathbb{I} \subset \mathbb{R})$.

1. Using that $\mathbb{Q}=\mathbb{R} \backslash \mathbb{I}$ (the set of all rationals) is countable, show that given $\epsilon>0$, there is a closed subset $F \subset \mathbb{I}$ such that $|\mathbb{I} \backslash F|<\epsilon$.
Here $|A|$ is the Lebesgue measure of the set $A$, and $\backslash$ is set subtraction.
2. Is $F$ compact? Please explain why or why not.

## Exercise 3:

Find (with proof),

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{1+n x^{3}}{\left(1+x^{2}\right)^{n}} d x
$$

## Exercise 4:

Let $(X, \mathcal{A}, \mu)$ be a measure space such that $\mu(X)=1$. Let $f$ be in $L^{1}(X)$ such that $f \geq 0$ almost everywhere.
(i). Show that

$$
\lim _{p \rightarrow 0^{+}} \int f^{p}=\mu(\{x \in X: f(x)>0\})
$$

(ii). If $\mu(\{x \in X: f(x)>0\})<1$, find

$$
\lim _{p \rightarrow 0^{+}}\left(\int f^{p}\right)^{1 / p}
$$

