GCE: Analysis, measure theory, Lebesgue integration January 2016 No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:

Let f_n be a sequence of continuous functions from [0, 1] to \mathbb{R} which is uniformly convergent. Let x_n be in [0, 1] such that $f_n(x_n) \ge f_n(x)$, for all x in [0, 1].

- (i). Is the sequence x_n convergent?
- (ii). Show that the sequence $f_n(x_n)$ is convergent.

<u>Exercise 2</u>:

Let \mathbb{I} be the set of all irrational real numbers $(\mathbb{I} \subset \mathbb{R})$.

- 1. Using that $\mathbb{Q} = \mathbb{R} \setminus \mathbb{I}$ (the set of all rationals) is countable, show that given $\epsilon > 0$, there is a closed subset $F \subset \mathbb{I}$ such that $|\mathbb{I} \setminus F| < \epsilon$. Here |A| is the Lebesgue measure of the set A, and \setminus is set subtraction.
- 2. Is F compact? Please explain why or why not.

Exercise 3: Find (with proof),

$$\lim_{n \to \infty} \int_0^1 \frac{1 + nx^3}{(1 + x^2)^n} dx$$

 $\underline{\text{Exercise } 4}$:

Let (X, \mathcal{A}, μ) be a measure space such that $\mu(X) = 1$. Let f be in $L^1(X)$ such that $f \ge 0$ almost everywhere.

(i). Show that

$$\lim_{p \to 0^+} \int f^p = \mu(\{x \in X : f(x) > 0\})$$

(ii). If $\mu(\{x \in X : f(x) > 0\}) < 1$, find

$$\lim_{p \to 0^+} (\int f^p)^{1/p}$$