GCE: 503, Analysis and measure theory May 2017 No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:

Let (X, \mathcal{A}, μ) be a measure space. Let A_n be a sequence in \mathcal{A} such that $\mu(A_n)$ converges to zero.

(i). Prove or disprove:

if $f: X \to [0,\infty)$ is a measurable function and $\mu(X) < \infty$ then $\int_{A_n} f$ converges to zero.

(ii). Let g be in $L^1(X)$. Show that $\int_{A_n} g$ converges to zero.

Exercise 2: Let (X, d) be a bounded metric space. For any non empty subset S of X and x in X we define:

$$d(x,S) = \inf\{d(x,s) : s \in S\}$$

If A and B are two non empty subsets of X we define:

$$d_H(A, B) = \max\{\sup_{x \in A} d(x, B), \sup_{x \in B} d(x, A)\}.$$

(i). If $d_H(A, B) = 0$, are A and B necessarily equal? (prove or disprove).

(ii). Let \mathcal{C} be the set of all non empty closed subsets of X. Show that d_H defines a metric on \mathcal{C} .

Exercise 3:

Let (X, \mathcal{A}, μ) be a measure space and $\{f_k\}$ a sequence in $L^p(X)$ where $1 \le p \le \infty$. Suppose that $\{f_k\}$ converges in $L^p(X)$ to f. Show that f_k converges in measure to f on X. **Hint:** According to the definition of convergence in measure, you need to show that for any positive ϵ , $\mu(\{x \in X : |f_k(x) - f(x)| \ge \epsilon\})$ converges to zero as k tends to infinity.

Exercise 4:

Suppose $g_n, g \in L^1(\mathbb{R})$, g_n converges to g almost everywhere, and $\int g_n$ converges to $\int g$. Define $f_n(x) := g_n(x+n)$.

(i). Prove or disprove: there exists an f in $L^1(\mathbb{R})$ such that f_n converges to f almost everywhere.

(ii). Prove or disprove: if there is an f as in (i), then $\int f_n$ converges to $\int f$.