GCE: 503, Analysis and measure theory May 2016
 No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:
A real-valued function f is increasing on a closed interval $[a, b] \subset \mathbb{R}$ if and only if $f\left(x_{2}\right) \geq f\left(x_{1}\right)$ whenever $x_{2}>x_{1}$.
(i). Using the definition of measurable, show that f is measurable on $[a, b]$.
(ii). Show that f is continuous, except perhaps a countable number of points.

Exercise 2:
If f is Lebesgue integrable on \mathbb{R}, define

$$
F(x)=\int_{0}^{x} f d \mu
$$

where $\mu(E)$ is the Lebesgue measure of any measurable set $E \subset \mathbb{R}$. Show that (i). F is continuous.
(ii). if $\mu(E)=0$, then $\mu(F(E))=0$.

Exercise 3:

Let f be in $L^{1}(\mathbb{R})$ such that $f \geq 0$ almost everywhere and $\int_{\mathbb{R}} f=1$. Set $f_{n}(x)=n f(n x)$. Let g be in $L^{\infty}(\mathbb{R})$.
(i). Let x_{0} be in \mathbb{R}. Assume that g is continuous at x_{0}. Show that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n}\left(x_{0}-y\right) g(y) d y=g\left(x_{0}\right)
$$

(ii). If g is uniformly continuous, is this limit uniform in x_{0} ?
(iii). If h is in $L^{1}(\mathbb{R})$ show that the function in x

$$
\int_{\mathbb{R}} f_{n}(x-y) h(y) d y
$$

converges to h in $L^{1}(\mathbb{R})$.

