Exercise 1:
A real-valued function f is increasing on a closed interval $[a, b] \subset \mathbb{R}$ if and only if $f(x_2) \geq f(x_1)$ whenever $x_2 > x_1$.

(i). Using the definition of measurable, show that f is measurable on $[a, b]$.
(ii). Show that f is continuous, except perhaps a countable number of points.

Exercise 2:
If f is Lebesgue integrable on \mathbb{R}, define

$$F(x) = \int_0^x f d\mu$$

where $\mu(E)$ is the Lebesgue measure of any measurable set $E \subset \mathbb{R}$. Show that

(i). F is continuous.
(ii). if $\mu(E) = 0$, then $\mu(F(E)) = 0$.

Exercise 3:
Let f be in $L^1(\mathbb{R})$ such that $f \geq 0$ almost everywhere and $\int_\mathbb{R} f = 1$. Set $f_n(x) = nf(nx)$.

Let g be in $L^\infty(\mathbb{R})$.

(i). Let x_0 be in \mathbb{R}. Assume that g is continuous at x_0. Show that

$$\lim_{n \to \infty} \int_\mathbb{R} f_n(x_0 - y)g(y)dy = g(x_0)$$

(ii). If g is uniformly continuous, is this limit uniform in x_0?
(iii). If h is in $L^1(\mathbb{R})$ show that the function in x

$$\int_\mathbb{R} f_n(x - y)h(y)dy$$

converges to h in $L^1(\mathbb{R})$.