GCE: 503, Analysis and measure theory May 2016 No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:

A real-valued function f is *increasing* on a closed interval $[a, b] \subset \mathbb{R}$ if and only if $f(x_2) \ge f(x_1)$ whenever $x_2 > x_1$.

(i). Using the definition of *measurable*, show that f is measurable on [a, b].

(ii). Show that f is continuous, except perhaps a countable number of points.

Exercise 2: If f is Lebesgue integrable on \mathbb{R} , define

$$F(x) = \int_0^x f d\mu$$

where $\mu(E)$ is the Lebesgue measure of any measurable set $E \subset \mathbb{R}$. Show that (i). F is continuous. (ii) if $\mu(E) = 0$, then $\mu(E(E)) = 0$.

(ii). if $\mu(E) = 0$, then $\mu(F(E)) = 0$.

Exercise 3:

Let f be in $L^1(\mathbb{R})$ such that $f \ge 0$ almost everywhere and $\int_{\mathbb{R}} f = 1$. Set $f_n(x) = nf(nx)$. Let g be in $L^{\infty}(\mathbb{R})$.

(i). Let x_0 be in \mathbb{R} . Assume that g is continuous at x_0 . Show that

$$\lim_{n \to \infty} \int_{\mathbb{R}} f_n(x_0 - y)g(y)dy = g(x_0)$$

(ii). If g is uniformly continuous, is this limit uniform in x_0 ? (iii). If h is in $L^1(\mathbb{R})$ show that the function in x

$$\int_{\mathbb{R}} f_n(x-y)h(y)dy$$

converges to h in $L^1(\mathbb{R})$.