Linear Algebra General Comprehensive Exam

Print Name:	CI.	
erint Name:	Sign:	
i illio i (dillo.	 ~18 ¹¹¹	

In the following, \mathbb{R}^n is real *n*-dimensional space, \mathbb{C}^n is complex *n*-dimensional space, and $\mathbb{R}^{n \times n}$ is the space of real $n \times n$ matrices.

1. Let
$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ -1 & 1 & 2 & 1 \\ -1 & 1 & 0 & 3 \end{pmatrix}$$
.

- a. What is the rank of A?
- b. What is the determinant of A?
- c. Find the eigenvalues and eigenvectors of A.
- d. Find the characteristic polynomial of A.
- e. Find the transformation matrix M and its inverse such that $J = M^{-1}AM$ is the Jordan canonical form of A.
- 2. Compute the orthogonal complement of the subspace of \mathbb{C}^4 spanned by the vectors (-1, i, 0, 1) and (i, 0, 2, 0).
- 3. a. Determine a basis of $\mathcal{V}_1 \equiv \{p(x) = \alpha x^2 + \beta x^3 : \alpha, \beta \in \mathbb{R}\}$ that is orthonormal with respect to the inner product $\langle p_1, p_2 \rangle = \int_{-1}^1 p_1(x) p_2(x) dx$.
 - b. What is the orthogonal projection of $p(x) = x^4$ onto \mathcal{V}_1 with respect to this inner product.
 - c. Define $V_2 \equiv \{p(x) = \alpha + \beta x : \alpha, \beta \in \mathbb{R}\}$ and let $L : \mathcal{V}_1 \to \mathcal{V}_2$ be the linear transformation defined by $L(p) = d^2p/dx^2$ for $p \in \mathcal{V}_1$. What is the matrix representation of L with respect to the basis of \mathcal{V}_1 that you found in part (a) and the basis $\{1, x\}$ of \mathcal{V}_2 ? What are the null-space and range of L? Is L invertible?

4. Consider the linear system
$$Ax = b$$
, where $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 1 & -1 \end{pmatrix}$.

- a. Discuss the existence and uniqueness of solutions of this system. (Does a solution exist for every b? If not, then for what b, if any, does a solution exist? If a solution exists for some b, is it unique? If not, describe all possible solutions.)
- b. Find a least-squares solution for $b = \begin{pmatrix} 1 & 0 & 1 & 0 \end{pmatrix}^T$ by forming and solving the normal equation $A^TAx = A^Tb$.

- 5. Suppose that $u \in \mathbb{R}^n$ is given. Define the annihilators of u to be $\mathcal{A}(u) \equiv \{M \in \mathbb{R}^{n \times n} : Mu = 0\}.$
 - a. Show that $\mathcal{A}(u)$ is a subspace of $\mathbb{R}^{n \times n}$.
 - b. Define a linear transformation $P: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ by $P(M) = M(I uu^T)$ for $M \in \mathbb{R}^{n \times n}$. Show that P is a projection onto $\mathcal{A}(u)$.
 - c. Suppose that $\langle \cdot, \cdot \rangle$ is the Frobenius inner product on $\mathbb{R}^{n \times n}$, i.e., $\langle M, N \rangle = \operatorname{trace} M N^T$ for M and N in $\mathbb{R}^{n \times n}$. Show that P is *orthogonal* projection with respect to this inner product.
- 6. Let \mathcal{F} be the vector space of all continuous functions on the interval [0,1] with the inner product and norm defined by

$$\langle f, g \rangle = \int_0^1 f(t)g(t) \ dt$$
 and $||f|| = \langle f, f \rangle^{1/2}$.

- a. Let \mathcal{P} be the subspace of all polynomials in \mathcal{F} .
 - i. What is $\dim(\mathcal{P})$?
 - ii. Does there exist an orthonormal basis for \mathcal{P} ?
- b. By the Weierstrass Approximation Theorem, any function $f \in \mathcal{F}$ can be uniformly approximated by a polynomial $p \in \mathcal{P}$, i.e., if $f \in \mathcal{F}$ and $\epsilon > 0$, then there exists a $p \in \mathcal{P}$ such that $|f(t) p(t)| < \epsilon$ for all $t \in [0,1]$. Suppose that $||f|| \neq 0$ and that $0 < \delta < 1$. Taking $\epsilon = \delta ||f||$, we have in particular that there exists a $p \in \mathcal{P}$ such that $|f(t) p(t)| < \delta ||f||$ for all $t \in [0,1]$.
 - i. Check whether the following computation is correct:

$$\langle f, p \rangle = \int_0^1 f(t)[f(t) - f(t) - p(t)] dt \ge \int_0^1 f^2(t) dt - \int_0^1 |f(t)||f(t) - p(t)| dt$$

$$\ge ||f||^2 - ||f|| ||f - p|| \ge ||f||^2 (1 - \delta) > 0.$$

ii. What can you conclude concerning \mathcal{P}^{\perp} ? Compute $(\mathcal{P}^{\perp})^{\perp}$.