Linear Algebra General Comprehensive Exam

Print Name: \qquad Sign: \qquad

In the following, \mathbb{R}^{n} is real n-dimensional space, \mathbb{C}^{n} is complex n-dimensional space, and $\mathbb{R}^{\mathrm{n} \times \mathrm{n}}$ is the space of real $n \times n$ matrices.

1. Let $A=\left(\begin{array}{rrrr}1 & 1 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ -1 & 1 & 2 & 1 \\ -1 & 1 & 0 & 3\end{array}\right)$.
a. What is the rank of A ?
b. What is the determinant of A ?
c. Find the eigenvalues and eigenvectors of A.
d. Find the characteristic polynomial of A.
e. Find the transformation matrix M and its inverse such that $J=M^{-1} A M$ is the Jordan canonical form of A.
2. Compute the orthogonal complement of the subspace of \mathbb{C}^{4} spanned by the vectors $(-1, i, 0,1)$ and $(i, 0,2,0)$.
3. a. Determine a basis of $\mathcal{V}_{1} \equiv\left\{p(x)=\alpha x^{2}+\beta x^{3}: \alpha, \beta \in \mathbb{R}\right\}$ that is orthonormal with respect to the inner product $\left\langle p_{1}, p_{2}\right\rangle=\int_{-1}^{1} p_{1}(x) p_{2}(x) d x$.
b. What is the orthogonal projection of $p(x)=x^{4}$ onto \mathcal{V}_{1} with respect to this inner product.
c. Define $\mathcal{V}_{2} \equiv\{p(x)=\alpha+\beta x: \alpha, \beta \in \mathbb{R}\}$ and let $L: \mathcal{V}_{1} \rightarrow \mathcal{V}_{2}$ be the linear transformation defined by $L(p)=d^{2} p / d x^{2}$ for $p \in \mathcal{V}_{1}$. What is the matrix representation of L with respect to the basis of \mathcal{V}_{1} that you found in part (a) and the basis $\{1, x\}$ of \mathcal{V}_{2} ? What are the null-space and range of L ? Is L invertible?
4. Consider the linear system $A x=b$, where $A=\left(\begin{array}{cc}0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 1 & -1\end{array}\right)$.
a. Discuss the existence and uniqueness of solutions of this system. (Does a solution exist for every b ? If not, then for what b, if any, does a solution exist? If a solution exists for some b, is it unique? If not, describe all possible solutions.)
b. Find a least-squares solution for $b=\left(\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right)^{T}$ by forming and solving the normal equation $A^{T} A x=A^{T} b$.
5. Suppose that $u \in \mathbb{R}^{\mathrm{n}}$ is given. Define the annihilators of u to be $\mathcal{A}(u) \equiv\left\{M \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}: M u=0\right\}$.
a. Show that $\mathcal{A}(u)$ is a subspace of $\mathbb{R}^{\mathrm{n} \times \mathrm{n}}$.
b. Define a linear transformation $P: \mathbb{R}^{\mathrm{n} \times \mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$ by $P(M)=M\left(I-u u^{T}\right)$ for $M \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$. Show that P is a projection onto $\mathcal{A}(u)$.
c. Suppose that $\langle\cdot, \cdot\rangle$ is the Frobenius inner product on $\mathbb{R}^{\mathrm{n} \times \mathrm{n}}$, i.e., $\langle M, N\rangle=\operatorname{trace} M N^{T}$ for M and N in $\mathbb{R}^{\mathrm{n} \times \mathrm{n}}$. Show that P is orthogonal projection with respect to this inner product.
6. Let \mathcal{F} be the vector space of all continuous functions on the interval $[0,1]$ with the inner product and norm defined by

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t \quad \text { and } \quad\|f\|=\langle f, f\rangle^{1 / 2}
$$

a. Let \mathcal{P} be the subspace of all polynomials in \mathcal{F}.
i. What is $\operatorname{dim}(\mathcal{P})$?
ii. Does there exist an orthonormal basis for \mathcal{P} ?
b. By the Weierstrass Approximation Theorem, any function $f \in \mathcal{F}$ can be uniformly approximated by a polynomial $p \in \mathcal{P}$, i.e., if $f \in \mathcal{F}$ and $\epsilon>0$, then there exists a $p \in \mathcal{P}$ such that $|f(t)-p(t)|<\epsilon$ for all $t \in[0,1]$. Suppose that $\|f\| \neq 0$ and that $0<\delta<1$. Taking $\epsilon=\delta\|f\|$, we have in particular that there exists a $p \in \mathcal{P}$ such that $|f(t)-p(t)|<\delta\|f\|$ for all $t \in[0,1]$.
i. Check whether the following computation is correct:

$$
\begin{aligned}
\langle f, p\rangle & =\int_{0}^{1} f(t)[f(t)-f(t)-p(t)] d t \geq \int_{0}^{1} f^{2}(t) d t-\int_{0}^{1}|f(t) \| f(t)-p(t)| d t \\
& \geq\|f\|^{2}-\|f\|\|f-p\| \geq\|f\|^{2}(1-\delta)>0 .
\end{aligned}
$$

ii. What can you conclude concerning \mathcal{P}^{\perp} ? Compute $\left(\mathcal{P}^{\perp}\right)^{\perp}$.

