Linear Algebra General Comprehensive Exam

Print Name:	Sign:
-------------	-------

In the following, \mathbb{R}^n is real n-dimensional space, \mathbb{C}^n is complex n-dimensional space, and $\mathbb{R}^{n \times n}$ is the space of real $n \times n$ matrices. If no specific basis is mentioned, then all linear transformations are expressed through the canonical basis.

1. Let $e_1, e_2, ..., e_{2n}$ be the standard basis vectors for \mathbb{R}^{2n} . Consider the set S of vectors of the form

$$e_i - e_j$$
,

where i is an even index in the range 2, ..., 2n and j is an odd index in the range 1, ..., 2n-1.

- a. Is S linearly independent?
- b. Is S spanning?
- c. What is the orthogonal complement R of the space spanned by S? Compute the dimension and find a basis for R.
- 2. The ODE x'' + dx' + kx = 0 is a simple model of a damped mechanical oscillator with unit mass, in which x is the displacement from equilibrium, d > 0 is the drag coefficient, and k > 0 is the "spring constant." By introducing a new variable v = x', we can write the ODE as an equivalent system of first-order equations

$$\begin{array}{rcl}
x' & = & v \\
v' & = & -kx - dv
\end{array}$$

- a. Write the system in matrix-vector form y' = Ay, where $y \in \mathbb{R}^2$ and $A \in \mathbb{R}^{2 \times 2}$. In the remainder of this problem, take d = 5 and k = 4.
 - b. Find the eigenvalues and corresponding eigenvectors of A.
 - c. Find a nonsingular matrix T and diagonal matrix Λ such that $A = T\Lambda T^{-1}$.
 - d. If we define $w = T^{-1}y$, what first-order ODE system does w satisfy? What are the advantages of considering this system?
- 3. Consider a sequence $\{a_n\}_{n=1}^{\infty}$, where a_0 and a_1 are given and subsequent a_n are defined by the recurrence

$$a_n = b a_{n-1} + c a_{n-2}, \quad n = 2, 3, \dots$$

for given b and c.

a. Write this recurrence in matrix-vector form

$$v_n = M v_{n-1}, \quad n = 2, 3, \dots,$$

where $v_n = (a_n, a_{n-1})^T$.

In the remainder of this problem, take b = 3/2 and c = 1.

- b. Find the eigenvalues and corresponding eigenvectors of M.
- c. Find a pair of values a_0 and a_1 for which $a_n \to \infty$, and another pair for which $a_n \to 0$.
- 4. Suppose that $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$.
 - a. What are the eigenvalues of A and of A^{-1} ?
 - b. What are the eigenvalues of $(A^3 + 3A^2 + 3A + I)^{-1}$?
- 5. a. For $A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \\ 1 & 1 \\ -1 & 0 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ -2 \\ 1 \\ 1 \end{pmatrix}$, find a least-squares solution of Ax = b. Is

your solution unique?

- b. What is the dimension of $S = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 1 \\ 1 \end{pmatrix} \right\}$?
- c. Find an orthonormal basis of S.
- d. Determine the orthogonal projection of $v = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ onto \mathcal{S} .
- 6. For $A \in \mathbb{R}^{n \times n}$, define $\langle u, v \rangle = u^T A v$ for all u and v in \mathbb{R}^n .
 - a. What is a necessary and sufficient condition on A for $\langle \cdot, \cdot \rangle$ to be an inner product on \mathbb{R}^n ?

For the remainder of this problem, assume that this condition holds and that $\langle \cdot, \cdot \rangle$ is an inner product on \mathbb{R}^n .

- b. What is a necessary and sufficient condition on $M \in \mathbb{R}^{n \times n}$ for multiplication by M to be a self-adjoint transformation on \mathbb{R}^n with respect to $\langle \cdot, \cdot \rangle$?
- c. Suppose that \mathcal{S} is a k-dimensional subspace of $\mathbb{R}^{n \times n}$ and that the columns of $U \in \mathbb{R}^{n \times k}$ are orthonormal with respect to $\langle \cdot, \cdot \rangle$. Show that the transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ defined by $T(v) = UU^T Av$ is orthogonal projection onto \mathcal{S} with respect to $\langle \cdot, \cdot \rangle$.
- 7. Let A be a real $n \times n$ matrix with an eigenvalue λ having algebraic multiplicity n. Show that

$$e^{At} = e^{\lambda t} \left[I + (A - \lambda I)t + \dots + \frac{(A - \lambda I)^{n-1}}{(n-1)!} t^{n-1} \right]$$

(hint: show that both side satisfy the same ODE)