Exercise 1:
Let K be \mathbb{R} or \mathbb{C} and a_0, \ldots, a_{n-1} be in K. Let C be the n by n matrix
\[
\begin{pmatrix}
0 & 0 & \cdots & 0 & -a_0 \\
1 & 0 & \cdots & 0 & -a_1 \\
0 & 1 & \cdots & 0 & -a_2 \\
\vdots & \vdots & & \vdots & \ddots \\
0 & 0 & \cdots & 1 & -a_{n-1}
\end{pmatrix}
\]
Show that the characteristic polynomial of C and the minimal polynomial of C are both equal to $P(t) = a_0 + a_1 t + \cdots + a_{n-1} t^{n-1} + t^n$.

Exercise 2:
Let A and B be two invertible n by n matrices. Let M be the matrix
\[
M = \begin{pmatrix} A & B \\ B^{-1} & A^{-1} \end{pmatrix}.
\]
Assume that M has rank n. Show that A and B commute.

Exercise 3:
Let A be an n by n invertible matrix with entries in K. Suppose that u and v are two vectors in K^n such that $1 + v^T A^{-1} u \neq 0$. Show that $A + uv^T$ is invertible.
\textbf{Hint}: It suffices to prove that the inverse of $A + uv^T$ is
\[
A^{-1} - m A^{-1} uv^T A^{-1}
\]
where m is an adequate scalar.

Exercise 4:
Let $A = (a_{ij})$ be a symmetric n by n matrix with real entries. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Show that
\[
\sum_{1 \leq i, j \leq n} a_{ij}^2 = \sum_{i=1}^n \lambda_i^2
\]