Category I problems

problem I.1

Let A be the matrix $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$

Compute
(a) the rank of A,
(b) the trace of A,
(c) the determinant of A,
(d) the characteristic polynomial of A,
(e) all the eigenvalues of A,
(f) find corresponding eigenvectors,
(g) Compute $(2I - A)^3 - 2(2I - A)$

Does the answer to (g) surprise you? Can you formulate a relation of A to its characteristic polynomial?

(h) Is A diagonalizable? If so, find an orthogonal matrix Q such that $A = Q\Lambda Q^T$

(i) Compute $A^T A$ and AA^T and their eigenvalues and eigenvectors.
(j) Compute e^A and comment (without computing it) on the behavior of the solution to $\frac{d\tilde{u}}{ds} = A\tilde{u}, \tilde{u}(0) = \tilde{u}_0$.

problem 1.2

Consider the linear map $T : P_3 \to P_2$ defined by differentiation, i.e., by $T(p) = p' \in P_2$ for $p \in P_3$. Find the matrix representation of T with respect to the bases $\{1 + x, 1 - x, x + x^2, x^2 - x^3\}$ for P_3 and $\{1, x, x^2\}$ for P_2.

problem 1.3

Compute the matrix of transformation of coordinates (back and forth) from the canonical basis in \mathbb{R}^2 to the basis

$$B = \left\{ \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \end{pmatrix} \right\}$$

(these vectors' coordinates are with respect to the canonical basis).

problem 1.4

Let

$$A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \\ 1 & 1 \\ -1 & 0 \end{pmatrix} \text{ and } b = \begin{pmatrix} 1 \\ -2 \\ 1 \\ 1 \end{pmatrix}.$$

Find the least square solution of $Ax = b$.

problem 1.5

The set of all real $n \times n$ matrices, denoted $\mathbb{R}^{n \times n}$, is a vector space under the usual operations of matrix addition and scalar multiplication. Consider $S \equiv \{ A \in \mathbb{R}^{n \times n} : A^T = -A \}$, the set of all skew-symmetric matrices in $\mathbb{R}^{n \times n}$.

(a) Show that S is a subspace of $\mathbb{R}^{n \times n}$.

(b) Show that $P : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ defined by $P(A) = \frac{1}{2} (A + A^T)$ is the projection of $\mathbb{R}^{n \times n}$ onto S that is orthogonal with respect to the Frobenius inner product.

Category II problems
problem II.1
Prove that if A is a non-singular $n \times n$ matrix, then there exists a polynomial $f(t)$ such that $Af(A) = f(A)A = I$.

problem II.2
Prove that any square $n \times n$ matrix A can be obtained as a limit of matrices $A_I \to A$ that have n distinct eigenvalues.