Graduate Comprehensive Examination

Department of Mathematical Sciences

MA540, Probability and Mathematical Statistics I

January 19, 2017

1. Let \(X, Y \sim \text{Gamma}(1, 1) \) and \(S = \frac{X}{p} - \frac{Y}{1-p} \), \(0 < p < 1 \). Find the \(p \)th quantile of \(S \). What happens when \(p = 1/2 \)?

2. Suppose \(Z \sim \text{Beta}(\alpha, \beta + \gamma) \). Show that \(Z \) can be written as \(Z = XY \), where \(X \) and \(Y \) are independent with \(X \sim \text{Beta}(\alpha, \beta) \) and \(Y \sim \text{Beta}(\alpha + \beta, \gamma) \).

3. Let \(Z | X = x, \delta \sim \text{Normal}(\delta x, 1 - \delta^2) \), \(| \delta | < 1 \) and \(X \sim \text{Normal}(0, 1) \), \(x > 0 \) (half normal). Show that \(f(z) = 2\phi(x)\Phi(\lambda z) \), where \(\lambda = \delta / \sqrt{1 - \delta^2} \) and \(\phi(\cdot) \) and \(\Phi(\cdot) \) are respectively the pdf and cdf of the standard normal random variable. Find the moment generating function of \(Z \).

4. Suppose that \(X, Y | Z \sim \text{Bernoulli}(Z) \) and \(Z \sim \text{Beta}(\alpha, \beta) \).
 (a) Find the expectation of \(X \)
 (b) Find the Variance of \(X \).
 (c) Find covariance of \(X \) and \(Y \).
 (d) Show that \(X \) and \(Y \) are identically distributed.

5. Let \(X_n \sim \text{Poisson}(n\lambda) \) where the positive integer \(n \) is large and \(0 < \lambda \).
 (a) Find the limiting distribution of \(\sqrt{n} \left(\frac{X_n}{n} - \lambda \right) \).
 (b) Find the limiting distribution of \(\sqrt{n} \left[\frac{X_n}{n} - \sqrt{\lambda} \right] \).

6. Show that if \(U \) and \(V \) are independent uniform \((-1/2, 1/2)\) variables and \(U^2 + V^2 \leq 1/4 \), then \(U/V \) is a Cauchy variate.