Smart Fire Trucks and Smart Firefighter Tracking

Xinming Huang, ECE
Jianyu Liang, ME
Albert Simeoni, FPE
Rajib Mallick, Nima Rahbar, CEE
Objectives/Value Proposition

• Smart fire trucks with sensors and intelligence
 • Introduce sensors, i.e. cameras, radars, LiDARs, to detect pedestrians and obstacles in all blind spots of a truck driver.
 • Develop intelligent algorithms for cross traffic monitoring, collision avoidance, and advanced driver assistance.
 • Evaluate the technology on WPI’s autonomous vehicle platform.

• Wearable device for firefighter tracking
 • Build on WPI’s previous research experience from the “Precision Personnel Localization” (PPL) project.
 • Develop new sensor prototype by combining GPS, inertial measurement unit, laser rangefinder, infrared cameras, etc.
 • Propose new algorithms of precise motion tracking using machine learning, simultaneous localization and mapping.
Motivation

Smart fire truck: add sensors and intelligence from our current research on autonomous vehicles

Wearable firefighter tracker: multi-sensor fusion and machine learning for precise localization
Approach

Autonomous vehicle sensors
Data collection and experiments
Collision avoidance
Fire truck applications

Firefighter localization
Wearable sensors
Classification and tracking
3D building mapping
Seed Grant Activities

- Formed multi-disciplinary research team
 - Faculty members from FPE, ECE, ME, and CEE
- Recruited 2 PhD, 2 MS, and 2 MQP and IQP teams.
 - The student team will travel to Tsinghua this summer.
- Conducted preliminary research
 - Review WPI’s Personnel Localization (PPL) project and Michigan’s Pedestrian Dead Reckoning (PDR) project.
 - Research on vehicle perception from camera data and LiDAR data for pedestrian/vehicle/road detections.
 - Build deep learning platform on DrivePX2 embedded platform for in-vehicle high-speed data processing.
 - Experiment outdoor localization using GPS, IMU, and simultaneous localization and mapping.