

Introduction to MS4SSA Robotics Modules

Mike Gennert Director, Robotics Engineering

Brad Miller Associate Director, Robotics Resource Center

Worcester Polytechnic Institute
23 May 2017

A Robot in Every Home

Scientific American, January 2007

SCIENTIFIC

ENDING PAIN WITHOUT SIDE EFFECTS . THE MOUNTAINS THAT SANK

"I can envision a future in which robotic devices will become a nearly ubiquitous part of our day-to-day lives... to see, hear, touch and manipulate objects in places where we are not physically present"

Evolution and Cancer

Can Ethanol Replace Gasoline?

Secret Controls for Genes

:hairman

Driving Factors

Exponentials – x2 at regular intervals

- Moore's Law Processors 1.5 years
- Kryder's Law Storage 1.5 years
- Butter's Law Network 9 months

Moore's Law

- x2 every 1.5-2 years
- 58 years later...
 - 29-39 doubles
 - $-2^{29} = 500 \text{ M}, 2^{39} = 500 \text{ B}$
- ~30 B transistors on largest chips now

Kryder's Law

4 TB Hard Drive \$109 newegg.com 4TB in punch cards = ?

US Library of Congress = 10 Tb

= 120,000 tons

= USS Gerald R. Ford

Butter's Law

"NEC and Corning achieve petabit optical transmission"

SPIE Optics.org, 22 Jan 2013

 $1 \text{ Pb/s} = 10^{15} \text{ b/s}$

= Entire LoC in 0.01 s

Robotics Follows Exponentials

Stanford AI Lab Cart 1979, 3meters/hr

10,000x in 26 years, 2x every 2 years

Tech Drivers

- Robotics rode Moore's Law
- Robotics will drive future exponentials
- Laser range finder:

Present:

– Past:

– Future:

Today's Robots

The Robotics Equation

Sensors,
Computing devices,
Actuators,
Communications

Defense & Security,
Medicine & Elder care,
Consumer,
Manufacturing,
Nano-technology,
Entertainment

Tasks that are too
-Dull
-Dangerous
-Dirty
for humans

COS NEED

Robotics Education

Robotics Education Gap

Robotics Research

Robotics Engineering PhD @ rge Research University

Industrial Robo Technology

AA, AS @ Community College

"Making useful robots, Making robots useful"

Motivation for Robotics Major

Growth in importance of Robotics

- Supply: Push of tech capability & cost
- Demand: Pull of needs & applications

K-12 interest in Robotics

Offer students what they want

Great fit for WPI

- Strong CS, ECE, ME
- Project-based curricula
- FIRST Team 190 tradition

Leadership

TouchTomorrow

Eric Overström Provost, Worcester Polytechnic Institute

Stephen Bowen
NASA Astronaut

Sam Ortega NASA SRR Challenge Program Manager

Jascha Little Team Leader, Survey

Middle School Robotics

Vision

- Exemplary, nationally recognized,
- Multidisciplinary center for
- Education, research, and innovation in
- Robotics

WPI Robotics Engineering

BS

- Goal: Educate engineers for 21st century
- Grow robotics industry: Supply talent, Start companies

MS

- Goal: Technical Leadership
- Expand robotics industry: Systems thinking

PhD

- Goal: Research Leadership
- Advance robotics: Knowledge, Capabilities

Key Ideas

- Multidisciplinary: CS / ECE / ME
- Spiral Curriculum:
 - Intro to Robotics
 - Unified Robotics I-IV
 - Actuation, Sensing, Manipulation, Navigation
- Social Implications
- Entrepreneurship & the enterprising eng'r
- Project-based

It's never "Not my job!"

Curriculum 1.0

Black: Required General Education (12 courses)

Grand Green Basic Math and Science (9 co

Purp mended Basic Math and Science
Red: Red: A ngineering (13 courses)

Blue: Re led Engineering and Fred (9 courses)

Class	A Term	B Term	C Term	D Term
Freshman	MA 1021 PH 1110 HU	1022	MA 1023 PE HU	MA 1024 PH 1120 HU
Sophomore	CS 1101 RBE 1001 HU		CS 2303 ECE 2011 SS	MA 2051 ECE 2022 SS
Junior	ECE 2801 ES 2501 IQP	223	ME 3310 Project Preparation IQP	ECE 2311 CS 3733 Robotics Elective 1
Senior	CS 4341 ES 3011 MQP	Robotics Elect Free Elective MQP	Pobotics Elective 3 e Elective	Free Elective

Where's the Robotics?

Curriculum Picture

Curriculum 2.0

Black: Required General Education (12 courses)

Green: Required Basic Math and Science (11 courses)

Red: Required Engineering (13 courses)

Blue: Recommended Engineering and Free Electives (9 courses)

Year	A Term	B Ter			C Term	D Term
Freshman	Calculus 1	Calcu			Calculus 3	Calculus 4
	Physics 1	Physi			CS 1	Digital Logic
	Great Problems	Great		ems	HU&A	Intro Robotics
Soph	Unified Robtcs 1	Unifie	d	otcs 2	Controls	CS 2
	Embedded Sys	Diff E	q		Soc Sci	Soc Sci
	Statics	HU&A	1		HU&A	HU&A Seminar
Junior	Unified Robtcs 3	Unifie	d	otcs 4	Linear Algebra	Social Issues
	Entrpreneur'p	Probability			RBE Elective 1	RBE Elective 2
	Junior Project	Junior Project		ect	Junior Project	Software Eng
Senior	Science	Free E		e 1	Free Elective 3	Free Elective 5
	RBE Elective 3	Free E		e 2	Free Elective 4	Free Elective 6
	Capstone Project	Capst	one F	roject	Capstone Project	Free Elective 7

Where's the Robotics?

Courses

Undergraduate

RBE1001 Intro to Robotics

RBE2001 Unified 1: Actuation

RBE2002 Unified 2: Sensing

RBE3001 Unified 3: Manipulation

RBE3002 Unified 4: Navigation

RBE4322 Mechatronics

RBE4815 Industrial Automation

Graduate

RBE500 Foundations

RBE501 Dynamics

RBE502 Robotic Control

RBE510 Multi-Robot Sys

RBE520 Biomechanics & Robotics

RBE526 Human-Robot Interaction

RBE549 Computer Vision

RBE550 Motion Planning

RBE580 Biomedical Robotics

RBE594 Capstone Proj Experience

RBE595 Special Topics

Adv. Robot Navigation

Adv. Robotic Parallel & Walking Mechanisms

Deep Learning for Adv. Robotic Perception

Formal Methods in Robotics

Smart Materials & Actuation

Soft Robotics

Space & Planetary Robotics

Hard-working Students

RBE 1001 Intro to Robotics Student Course Evaluations C Term 2013:

26A. On average, how many hours of the formally scheduled hours for lecture, conference, and labs did	d you ATTEND each week?
3 hr/wk or less	0
4 hr/wk	1
5 hr/wk	0
6 hr/wk	11
7 hr/wk or more	8
26B. On average, what were the total hours spent in each 7-day week OUTSIDE of formally scheduled course (including studying, reading, writing, homework, rehearsal, etc.)?	class time in work related to
0 hr/wk	0
1-5 hr/wk	2
6-10 hr/wk	5
11-15 hr/wk	1
16-20 hr/wk	5
21 hr/wk or more	7

Capstone Projects

ROBOTICS ENGINEERING

IPASS

AN INTELLIGENT PORTABLE AERIAL SURVEILLANCE SYSTEM

PROJECT TEAM:

ADAM BLUMENAU – ALEC ISHAK – BRETT LIMONE ZACHARY MINTZ – COREY RUSSELL – ADRIAN SUDOL

ADVISORS:

TASKIN PADIR - LIFENG LAI

er

Select Project Sponsors

GENERAL DYNAMICS Strength On Your Side®

maxon motor driven by precision

www.Hydro-Cutter.com

Enrollment

Jobs & Internships

Black-i Robotics

United Technologies

Robotics Research Sensing & Manipulation

Human-Robot Interaction

Biomedical Robotics

Assistive Robotics

Manufacturing

Odometry & Mapping

Soft Robotics

DARPA Robotics Challenge

Fukushima Disaster

Too dangerous for humans ...

... send a robot

Too bad robots can't ...

- Traverse rubble
- Attach hoses
- Close valves
- Open doors ... **YET!**
- Climb ladders
- Use tools
- Remove debris
- Drive vehicle

DRC Trials Video

Self-Driving Vehicles

Self-driving shuttle loops around Santa Clara University campus

Construction

Human Augmentation

Logistics

Garbage Trucks: On Route, In Action! https://www.youtube.com/watch?v=LTUjiLxzDQs

Residential Life

Ask TOH | Robotic Wall https://www.thisoldhouse.com/watch/ask-toh-robotic-wall-bench

Dining Services & Food Prep

Drones

http://www.kumarrobotics.org/

Science http://www.sciencemag.org/news/2015/02/how-lawmakers-aim-protect-you-drone-invasion

https://assets.wired.com/photos/w_1440/wp-content/uploads/2017/02/American-Flag-ImageTA.jpg

- Ubiquitous
- Cheap
- Hazards / threats
- FAA Regs
 - Fun vs. Work
 - Restrictions
 - Registration

Lessons Learned

For faculty buy-in

- Need vision & passion... & a business plan
- Bottom-up approach better than top-down
- Top-down approach better than bottom-up
- Stick to one's principles
- Be open to compromise on anything else
- Communicate & cooperate
- Be bold!

For curriculum design

How to Win with Academics

Acknowledgements

- This work is sponsored in part by AFOSR, DARPA, GE, NIH, NSF, Toyota, WPI
- Equipment: ABB, Axis Communications, Maxon Motors, NVIDIA
- Many colleagues and contributors

Thank You!