

An initiative to improve mathematics and science for Sub-Saharan Africa MATHEMATICS AND SCIENCE FOR SCHOOLS IN SUB-SAHARAN AFRICA TRAINING PROGRAM (MAY 17 – MAY 26, 2017)

CLAY MODULES FOR PROJECT-BASED LEARNING THE PROCESSING AND TESTING OF CERAMIC WATER FILTERS John OBAYEMI, Pierre-Marie NIGAY and Wole SOBOYEJO

WATER TREATMENT CONTEXT

INTRODUCTION
 PROCESSING
 STRUCTURE
 PROPERTIES

Contaminated water

- Biggest cause of the decline in life expectancy in Africa
- Bigger impact on life expectancy than that of HIV
- Example of Nigeria: 5000 lives lost per day

Different types of contamination

- Bacterium (E. Coli...) that may cause infectious diarrhea
- > Chemicals (Fluoride...) that may cause skeletal deformities
- Viruses (Hepatitis...) that may cause liver infection

WATER TREATMENT BACKGROUND

1. INTRODUCTION

- 2. PROCESSING
- 3. STRUCTURE
- 4. **PROPERTIES**
- 5. CONCLUSIONS

BACTERIUM

Trapping in the pores of porous materials (such as fired clay ceramics)

CHEMICALS

Recombination with reactive materials (such as hydroxylapatite)

VIRUSES

Adhesion on the surface of sorbent materials (such as alumina)

Objectives 1. Development of porous clay ceramics with hydroxylapatite and alumina to remove both bacterium, chemicals and viruses from contaminated water

- 2. Measurement of potable water filtered by ceramic water filter
- **3. Suggesting alternative designs for multi-ceramics filtration systems**

WATER FILTERS PROCESSING

Water

Ceramic water filter

4

Firing

- . INTRODUCTION
- 2. PROCESSING
 - 3. STRUCTURE
 - 4. PROPERTIES
 - 5. CONCLUSIONS

WATER FILTERS PROCESSING

Firing of the materials at temperatures up to 800°C

- Combustion of the sawdust that results in a porosity formation
- Sintering of the clay particles that provides a mechanical strength

WATER FILTERS STRUCTURE

- INTRODUCTION
 PROCESSING
 STRUCTURE
- 4. PROPERTIES
- 5. CONCLUSIONS

Control of the ceramic water filters structure

Combustion of the sawdust during the firing process (Air)

Formation of pores equivalent to the morphology of the particles

Inter-connected pores with a path for water using large particles of sawdust in the form of fibers

WATER FILTERS STRUCTURE

Development of permeable materials

Permeability due to the interconnection of pores
 Increase of the permeability with the porosity

Capture of pathogens

- Deposition of bacterium in traps of the porous network
- Transformation of chemicals at the interface with hydroxylapatite
- Adhesion of viruses onto alumina

Relation with the structure

- Increase in the capture efficiency of pathogens with the water flow
- Increase in the water flow with the permeability

PROCESSING **PROPERTIES** 4. CONCLUSIONS

E. Coli filtration

Clay:Sawdust	Removal (%)
45:55	99.91
50:50	99.96
55:45	99.68
65:35	99.99

Chemicals filtration

INTRODUCTION
 PROCESSING
 STRUCTURE
 PROPERTIES
 CONCLUSIONS

Control of the mechanical properties from the structure

- Increase of the strength and Young's modulus with small pores (sawdust powder)
- Increase of the strain and toughness in the case of anisotropic pores (sawdust fibers)

Clay + sawdust powder

Clay + sawdust fibers

INTRODUCTION
 PROCESSING
 STRUCTURE
 PROPERTIES
 CONCLUSIONS

Group Discussion

1. Do you observe any trend in the flow rate values? Yes or No? Explain the factors that might have affected flow rate data obtained.

INTRODUCTION
 PROCESSING
 STRUCTURE
 PROPERTIES
 CONCLUSIONS

Group Discussion

- 1. Do you observe any trend in the flow rate values? Yes or No? Explain the factors that might have affected flow rate data obtained.
- 2. Based on the knowledge gained from this session, suggest/sketch (with rationale) a new design for the ceramic water filter.

INTRODUCTION
 PROCESSING
 STRUCTURE
 PROPERTIES
 CONCLUSIONS

Group Discussion

- 1. Do you observe any trend in the flow rate values? Yes or No? Explain the factors that might have affected flow rate data obtained.
- 2. Based on the knowledge gained from this session, suggest/sketch (with rationale) a new design for the ceramic water filter.
- **3.** From your experimental results, provide a schematic diagram of a multiceramic water filtration system, which has the potential of providing safe drinking water for a community of 300-500 people. You may use data from your experiment for explanation.

- INTRODUCTION
 PROCESSING
 STRUCTURE
 PROPERTIES
- 5. CONCLUSIONS

Darcy's law:

$$Q = \frac{\kappa A}{L} \frac{\Delta p}{\mu}$$

CONCLUSIONS PROSPECTS

Conclusions

- Removal of bacterium, chemicals and viruses from contaminated water
- Potable water for 6 persons a day using one ceramic water filter
- Establishment of companies for the dissemination of the technology

Prospects

- Education to avoid misconceptions associated with filter use
- Scale up with larger filters number

INTRODUCTION PROCESSING

PROPERTIES

5. CONCLUSIONS

An initiative to improve mathematics and science for Sub-Saharan Africa

MATHEMATICS AND SCIENCE FOR SCHOOLS IN SUB-SAHARAN AFRICA TRAINING PROGRAM (MAY 17 – MAY 26, 2017)

THANK YOU FOR YOUR ATTENTION