Center Organization

• **Objective**
 – To assist our industrial partners in their quality assurance and imaging requirements

• **What we deliver**
 – Inspection and imaging methodologies
 – Fundamental sensor and instrumentation research
 – Turn-key prototype system development
 – Circuit design, simulations, layouts

• **Organization**
 – Two full-time ECE faculty
 – Funded graduate research assistants
 – ECE software/hardware tools, shop resources
Approach

• Regular meetings with our partners
 – Company-specific research updates
 – Demonstration of prototypes
 – Presentations by undergraduate/graduate project students

• Use of industry standard tools
 – HFSS, ADS, Matlab, SolidWorks, etc.

• Dissemination of research
 – Research reports
 – Conference/journal publications
 – Student theses
1st Example: Electrical Impedance Tomography (EIT) of Polycrystalline Diamond Cutters

- **Problem description**
 - Have to characterize cutter performance nondestructively
 - Need to detect hidden defects in a cost-effective way

- **Approach**
 - Measure electrical conductivity
 - Diamond table conductivity depends on residual metal content
 - Metal content is correlated with cutter performance characteristics
 - Localized conductivity measurement can detect defects (metal-rich zones, cracks)
EIT System Development

• What we built
 – EIT data acquisition system
 ▪ Sensor with 120+2 pogo pins
 ▪ Analog front end (custom PCB)
 ▪ Pneumatic system for placing cutter in contact with the sensor
 ▪ Machine vision system for diamond table thickness measurement
 – Custom-developed 3D EIT software
 ▪ FEM forward solver
 ▪ GPU-accelerated iterative inverse solver

• Outcomes
 – Two machines in industrial use for more than 5 years
 – Conductivity dataset acquired and reconstructed in 5 sec
 – 1 journal paper, 3 conference papers
 – 1 patent granted
2nd Example: Machine Vision System for Diamond Thickness Measurement

- **Problem description**
 - Diamond cutter EIT requires diamond thickness for quantitative conductivity measurements

- **What we built**
 - Machine vision system using specular reflection contrast
 - Cutter is rotated by an existing roller system
 - Full rotation is detected by image correlation
 - Blur radius measurement for focusing

- **Outcome**
 - One prototype in use and coupled to one of the EIT machines
3rd Example: High-Pressure Gasket Moisture Content Measurement

• Problem description
 – Soft material is used as a gasket and pressure transmission medium
 – Excess moisture gasket can cause failure during decompression
 ▪ Potential catastrophic damage to press anvils
 – Need a nondestructive method of monitoring gasket moisture content

• Approach
 – Electric RF field/moisture interaction
High-Pressure Gasket Moisture System

• **What we built**
 – Coaxial resonator sensor
 – Sample loader
 – Rapid moisture content estimation software
 – Experimental multimode cavity sensor

• **Outcomes**
 – 5 moisture meters installed at our industrial partner
 – 3 QNDE papers
 – 1 patent application filed
4th Example: Electrochemical Leaching of Polycrystalline Diamond

- **Problem description**
 - Metal must be removed from polycrystalline diamond to a certain depth to meet performance specifications
 - Existing process using HF-HNO₃ mix is slow, inconsistent, prone to yield issues, and dangerous
 - Our partner needs a replacement process

- **Approach**
 - Electrochemical metal removal
 - Amount of metal is related to accumulated charge
 - Nontoxic chemicals
Electrochemical Leaching System

• What we built
 – Multichannel (48-channel) potentiostat
 ▪ Applies voltage to cells
 ▪ Measures current in each leaching cell
 ▪ Accumulates charge
 ▪ Stops current when reaching calculated charge level
 ▪ Ethernet connectivity
 – Central control software for large number of potentiostats
 – Individual cutter cells (jointly developed)
 – Oven for heating cells (jointly developed)

• Outcomes
 – 6 potentiostat prototypes deployed (24, 32 and 48-channel versions)
 – Large amount of data collected
 – 1 patent application filed
5th Example: Lock-in Thermography for Bearing Braze Joint Inspection

• Problem description
 – Bearings for well drilling use polycrystalline diamond
 – Diamond-tipped inserts are brazed into the bearing body
 – Poor braze joints cause premature failure
 – Need a nondestructive braze joint inspection

• Approach
 – Low braze joint area results in weak thermal contact with the body
 – Measure thermal conduction from inserts to the body via lock-in thermography
Bearing Braze Joint Inspection System

• What we built
 – Lock-in thermography system
 ▪ Heating by 1000 W halogen lamp
 ▪ Sinusoidal modulation of lamp output
 ▪ IR camera images surface temperature evolution over time
 – Software to compute phase shift between heat source and temperature
 ▪ Robust measure of thermal diffusivity

• Outcomes
 – 1 prototype constructed
 – Successfully detected 1 bad braze joint in a limited number of samples
6th Example: Bore Inspection

- **Problem description**
 - Need to detect surface-breaking pores with resolution of 100µm in diameter on bore wall

- **Approach**
 - Machine vision
 - Specular reflection contrast
 - Bore wall strongly reflective
 - Pores less reflective
 - Fast, low cost
 - No sophisticated part manipulation (e.g. rotation-translation)
Bore Inspection System

• What we built
 – Imaging system
 ▪ High-resolution 5 MP camera
 ▪ Wide angle, short standoff lens
 ▪ Ring light illumination
 – Sample loader
 – Image processing software
 ▪ Bore wall unwrapping
 ▪ Defect detection

• Outcomes
 – Simulated pores detected on wide-bore (0.452”) parts
 ▪ Parts modified: rough bore bottom
 – Revision is under development to improve contrast
 ▪ Axial illumination

unwrapped bore
7th Example: Magnetic Resonance Imaging Dual-Tuned Head Coil

- **Problem description**
 - Demand for dual-tuned clinical MRI transmit/receive head coils for sodium (23Na) and hydrogen (1H) at 3T for stroke imaging
 - Wide frequency separation between 23Na at 34 MHz and 1H at 128 MHz
 - Higher frequency circuits inhibit the performance at the lower frequency, which is most critical

- **Approach**
 - Experimental coil design
 - Birdcage at low frequency (34 MHz)
 - TEM-like coil at high frequency (128 MHz)
MRI Dual-Tuned Head Coil

• What we built
 – Simulated competing coil designs
 ▪ Experimental birdcage-TEM coil
 ▪ Typical dual-tuned birdcage coil
 ▪ Dual-tuned TEM coil
 – Built and tested a prototype birdcage-TEM coil

• Outcomes
 – NIH SBIR grant awarded
 – Prototype performed similarly to simulation

B₁ field with load:
 top – 34 MHz (²³Na)
 bottom – 128 MHz (¹H)
8th Example: Solid-state 2 kW 2.45 GHz Microwave Generator

- **Problem description**
 - Semiconductor industry looking to replace magnetron MW generators with solid-state versions
 - More controllable and reliable
 - Challenges
 - Small package (4U rackmount)
 - Waveguide output
 - Efficient, pulsing capable
 - Low cost, short development time

- **Approach**
 - Combine outputs of eight 330 W solid-state power amplifier modules
Solid-state Microwave Generator

• **What we did**
 – Designed output stage with custom MW components:
 ▪ power combiners
 ▪ power dividers
 ▪ directional couplers
 ▪ waveguide transition
 – Tested 2-way combined 330 W modules

• **Outcomes**
 – 2-way prototype performed well
 ▪ up to 550 W output
 ▪ no oscillation
 ▪ pulsing capable