

Center for Imaging and Sensing (CIS)

Raunak Borwankar, Ian Costanzo, Gene Bogdanov, Sasidhar Tadanki, Reinhold Ludwig

ECE Department

Worcester Polytechnic Institute

100 Institute Road

Worcester, MA 01609

Phone: 508-831-5231

October 10, 2017

Center Organization

Objective

 To assist our industrial partners in their quality assurance and imaging requirements

What we deliver

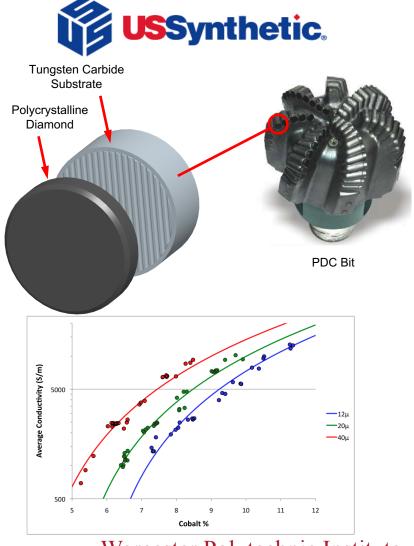
- Inspection and imaging methodologies
- Fundamental sensor and instrumentation research
- Turn-key prototype system development
- Circuit design, simulations, layouts

Organization

- Two full-time ECE faculty
- Funded graduate research assistants
- ECE software/hardware tools, shop resources

Approach

- Regular meetings with our partners
 - Company-specific research updates
 - Demonstration of prototypes
 - Presentations by undergraduate/graduate project students
- Use of industry standard tools
 - HFSS, ADS, Matlab, SolidWorks, etc.
- Dissemination of research
 - Research reports
 - Conference/journal publications
 - Student theses

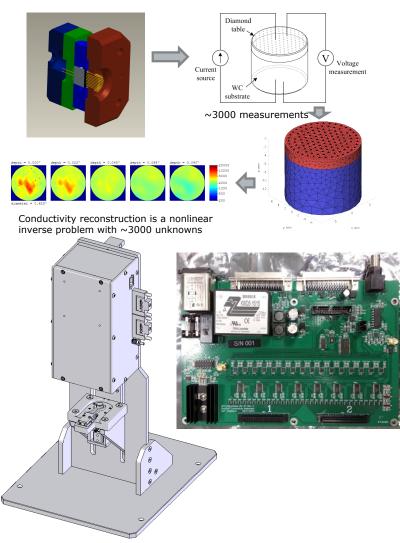

1st Example: Electrical Impedance Tomography (EIT) of Polycrystalline Diamond Cutters

Problem description

- Have to characterize cutter performance nondestructively
- Need to detect hidden defects in a cost-effective way

Approach

- Measure electrical conductivity
 - Diamond table conductivity depends on residual metal content
 - Metal content is correlated with cutter performance characteristics
- Localized conductivity measurement can detect defects (metal-rich zones, cracks)



EIT System Development

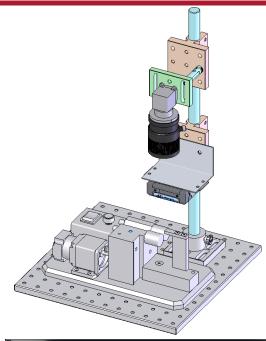
What we built

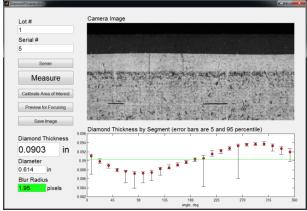
- EIT data acquisition system
 - Sensor with 120+2 pogo pins
 - Analog front end (custom PCB)
 - Pneumatic system for placing cutter in contact with the sensor
 - Machine vision system for diamond table thickness measurement
- Custom-developed 3D EIT software
 - FEM forward solver
 - GPU-accelerated iterative inverse solver

- Two machines in industrial use for more than 5 years
- Conductivity dataset acquired and reconstructed in 5 sec
- 1 journal paper, 3 conference papers
- 1 patent granted

2nd Example: Machine Vision System for Diamond Thickness Measurement

Problem description


 Diamond cutter EIT requires diamond thickness for quantitative conductivity measurements


What we built

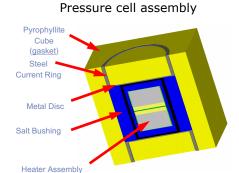
- Machine vision system using specular reflection contrast
- Cutter is rotated by an existing roller system
- Full rotation is detected by image correlation
- Blur radius measurement for focusing

Outcome

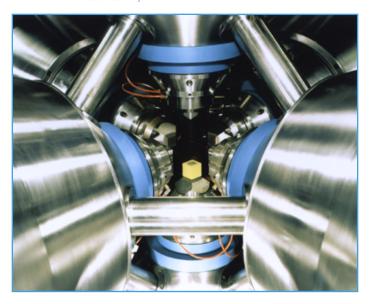
One prototype in use and coupled to one of the EIT machines

Worcester Polytechnic Institute

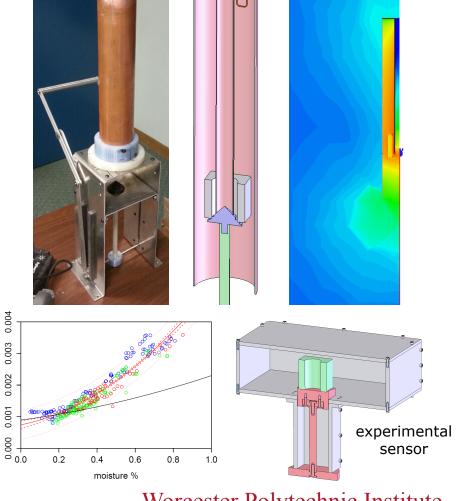
3rd Example: High-Pressure Gasket Moisture Content Measurement


Problem description

- Soft material is used as a gasket and pressure transmission medium
- Excess moisture gasket can cause failure during decompression
 - Potential catastrophic damage to press anvils
- Need a nondestructive method of monitoring gasket moisture content


Approach

Electric RF field/moisture interaction


High-Pressure Gasket Moisture System

What we built

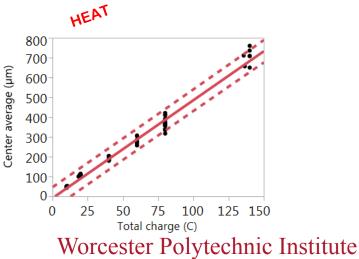
- Coaxial resonator sensor
- Sample loader
- Rapid moisture content estimation software
- Experimental multimode cavity sensor

Outcomes

- 5 moisture meters installed at our industrial partner
- 3 QNDE papers
- 1 patent application filed

4th Example: Electrochemical Leaching of Polycrystalline Diamond

Problem description

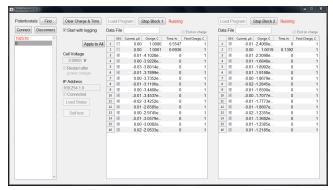

- Metal must be removed from polycrystalline diamond to a certain depth to meet performance specifications
- Existing process using HF-HNO₃
 mix is slow, inconsistent, prone to yield issues, and dangerous
- Our partner needs a replacement process

Approach

- Electrochemical metal removal
- Amount of metal is related to accumulated charge
- Nontoxic chemicals

Electrochemical Leaching System


What we built


- Multichannel (48-channel) potentiostat
 - Applies voltage to cells
 - Measures current in each leaching cell
 - Accumulates charge
 - Stops current when reaching calculated charge level
 - Ethernet connectivity
- Central control software for large number of potentiostats
- Individual cutter cells (jointly developed)
- Oven for heating cells (jointly developed)

- 6 potentiostat prototypes deployed (24, 32 and 48-channel versions)
- Large amount of data collected
- 1 patent application filed

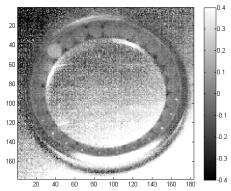
5th Example: Lock-in Thermography for Bearing Braze Joint Inspection

Problem description

- Bearings for well drilling use polycrystalline diamond
- Diamond-tipped inserts are brazed into the bearing body
- Poor braze joints cause premature failure
- Need a nondestructive braze joint inspection

Approach

- Low braze joint area results in weak thermal contact with the body
- Measure thermal conduction from inserts to the body via lock-in thermography

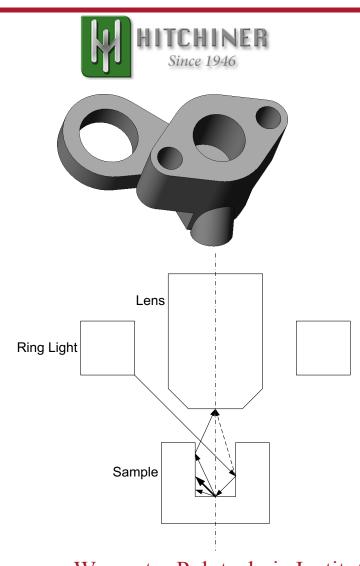

Bearing Braze Joint Inspection System

What we built

- Lock-in thermography system
 - Heating by 1000 W halogen lamp
 - Sinusoidal modulation of lamp output
 - IR camera images surface temperature evolution over time
- Software to compute phase shift between heat source and temperature
 - Robust measure of thermal diffusivity

- 1 prototype constructed
- Successfully detected 1 bad braze joint in a limited number of samples

Worcester Polytechnic Institute

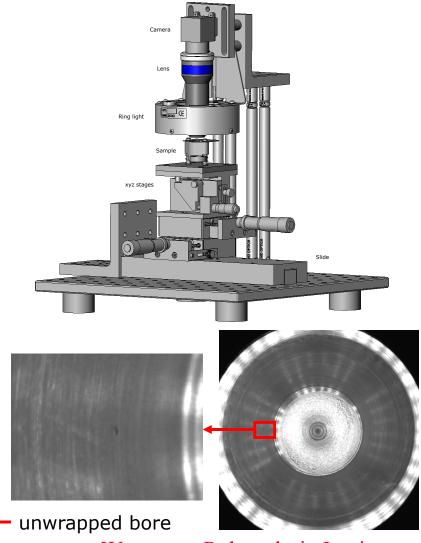

6th Example: Bore Inspection

Problem description

 Need to detect surface-breaking pores with resolution of 100µm in diameter on bore wall

Approach

- Machine vision
- Specular reflection contrast
 - Bore wall strongly reflective
 - Pores less reflective
- Fast, low cost
 - No sophisticated part manipulation (e.g. rotationtranslation)

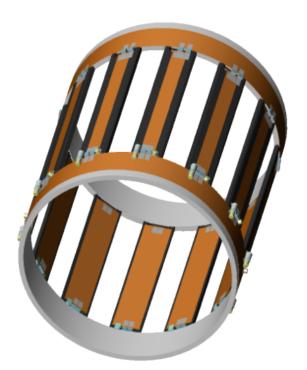


Bore Inspection System

What we built

- Imaging system
 - High-resolution 5 MP camera
 - Wide angle, short standoff lens
 - Ring light illumination
- Sample loader
- Image processing software
 - Bore wall unwrapping
 - Defect detection

- Simulated pores detected on wide-bore (0.452") parts
 - Parts modified: rough bore bottom
- Revision is under development to improve contrast
 - Axial illumination

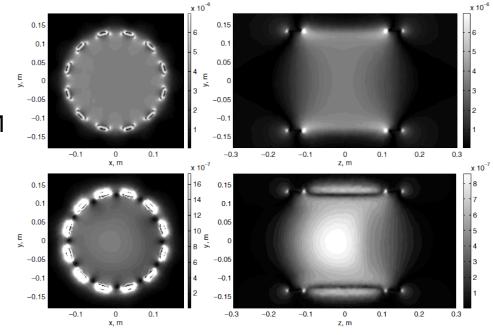

7th Example: Magnetic Resonance Imaging Dual-Tuned Head Coil

Problem description

- Demand for dual-tuned clinical MRI transmit/receive head coils for sodium (²³Na) and hydrogen (¹H) at 3T for stroke imaging
- Wide frequency separation between
 ²³Na at 34 MHz and ¹H at 128 MHz
 - Higher frequency circuits inhibit the performance at the lower frequency, which is most critical

Approach

- Experimental coil design
 - Birdcage at low frequency (34 MHz)
 - TEM-like coil at high frequency (128 MHz)



MRI Dual-Tuned Head Coil

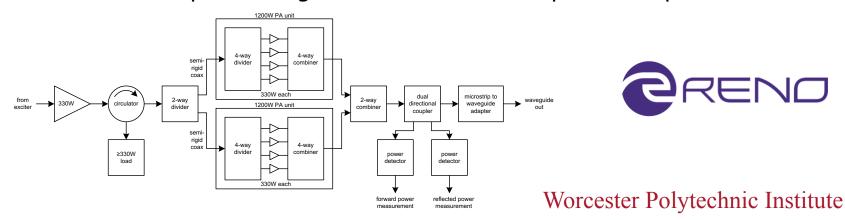
What we built

- Simulated competing coil designs
 - Experimental birdcage-TEM coil
 - Typical dual-tuned birdcage coil
 - Dual-tuned TEM coil
- Built and tested a prototype birdcage-TEM coil

- NIH SBIR grant awarded
- Prototype performed similarly to simulation

B₁ field with load: top – 34 MHz (²³Na) bottom – 128 MHz (¹H)

8th Example: Solid-state 2 kW 2.45 GHz Microwave Generator

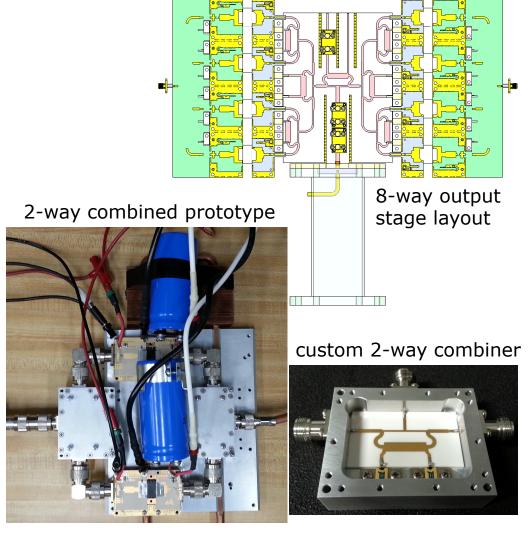

Problem description

Semiconductor industry looking to replace magnetron MW generators with solid-state versions

- More controllable and reliable
- Challenges
 - small package (4U rackmount)
 - waveguide output
 - efficient, pulsing capable
 - low cost, short development time

Approach

Combine outputs of eight 330 W solid-state power amplifier modules



Solid-state Microwave Generator

What we did

- Designed output stage with custom MW components:
 - power combiners
 - power dividers
 - directional couplers
 - waveguide transition
- Tested 2-way combined 330 W modules

- 2-way prototype performed well
 - up to 550 W output
 - no oscillation
 - pulsing capable

