WORCESTER POLYTECHNIC INSTITUTE

ELEVENTH ANNUAL INVITATIONAL MATH MEET OCTOBER 22, 1998 TEAM EXAM QUESTION SHEET

DIRECTIONS: Please write your answers on the Team Answer Sheet provided. This part of the contest is 30 minutes. Each correct answer to questions 1-14 is worth 3 points. Calculators MAY NOT be used.

The points A,B,C and D are collinear where AB, BC and CD are the diameters of three circles, each of radius 10. Let the line AE be tangent to the circle through C and D at the point E, as shown in the diagram. The line AE intersects the circle through B and C at the points F and G as shown. Find the length of the chord FG.

2 Given that
$$\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} = 2$$
, simplify the expression $\frac{a^2}{b+c} + \frac{b^2}{a+c} + \frac{c^2}{a+b}$.

³ Let f(x) = 3 + |x - 4| + 2 |x - 6|, $2 \le x \le 8$. Find the area of the planar region determined by the graphs of y = f(x), y = 1, x = 2 and x = 8.

4 Consider hexagonal array shown at the right. The nth <u>hex number</u>, h_n , is defined as the total number of dots in the first n layers. The first seven hex numbers are 1, 7, 19, 37, 61, 91, 127. Find h_{50} , the 50th hex number.

[5] Let
$$g(x) = \sqrt{x + 2\sqrt{x - 1}} - \sqrt{x - 2\sqrt{x - 1}}$$
, $x \ge 1$. Compute $\sum_{k=1}^{1000} g(k)$.

6 An ant moves across the top of a square at 4 mph, down the right side at 3 mph, across the bottom at 2 mph, and up the left side at 1 mph. What is the average speed of the ant, in mph, for one complete trip around the square?

[7] How many odd numbers between 1000 and 9999 have distinct digits?

Suppose that at the end of any year, a unit of money has lost 20% of the value it had at the beginning of that year. Find the least integer n such that at the end of n years the unit of money will have lost at least 80% of its initial value. (Assume $\log_{10} 2 = 0.301$.)

- 9 Twin primes are prime numbers which differ by 2 (17 and 19, or 29 and 31, for example). There are many twin primes, but there is only one triplet of primes: 3, 5 and 7. Which of the following best express the reason(s) why there cannot be any other triplet of primes?
 - a One of the three integers would be a perfect square (in the sequence 23, 25, 27, for example, 25 is a perfect square),
 - b In any sequence of three integers, if successive integers differ by 2, then one of the three integers is divisible by 3.
 - c If one divides the first integer in such a sequence by the last, the result is less than 1.
 - d $3^2 + 5^2 < 7^2$ while this is not true for large integers. For example $(23)^2 + (25)^2 > (27)^2$.

10 What is the coefficient of a^4b^2c in the expansion of $(a+2b+c)^7$?

Find the number of lines in a three-dimensional rectangular coordinate system that pass through five distinct points of the form (i, j, k), where i, j, k are positive integers not exceeding 5.

12 In the sequence of numbers 1, 4, 3 ... each term after the first two is equal to the term preceding it minus the term preceding that. Find the sum of the first one hundred terms of the sequence.

$$\boxed{13} \text{ Compute the value of } \left(1-\frac{3}{7}\right) \left(1-\frac{3}{8}\right) \left(1-\frac{3}{9}\right) \left(1-\frac{3}{10}\right) \cdots \left(1-\frac{3}{20}\right).$$

14 Let z be a complex number of magnitude 1, $z \neq -1$. Let $i = \sqrt{-1}$, and let c and d be real numbers with $c + di = \frac{1}{1+z}$. Find c.

SCHOOL	SOLUTIONS	

WORCESTER POLYTECHNIC INSTITUTE

Eleventh annual invitational math meet October 22, 1998 team exam ANSWER sheet

QUI	ESTION	ANSWER	SCORE
1		16	
2	a-	+6+C	
3		42	· .
4	7	,351	
5	1	,998	
6		48 on 1.9	2
7	c	2,240	

QUEST	ΓΙΟΝ	ANSWER	SCORE
8		8	
9		6	
10		420	
11		109	
12		7	
13		<u>L</u> 57	
14		12	

$\# \text{ correct} \times 3 =$	
Individual Totals	

Team	Total	