WORCESTER POLYTECHNIC INSTITUTE

TWELFTH ANNUAL INVITATIONAL MATH MEET
OCTOBER 21, 1999
TEAM EXAM QUESTION SHEET
DIRECTIONS: Please write your answers on the Team Answer Sheet provided. This part of the contest is 30 minutes. Each correct answer to questions 1-14 is worth 3 points. Calculators MAY NOT be used.
[1] Let S be the set of all ordered pairs of integers. On S define a multiplication, \odot, such that

$$
(a, b) \odot(c, d)=(a c+2 b d, a d+b c)
$$

where the operations on the right are usual multiplication and addition of integers. What is the identity element for the operation \odot on S ?

2 What is the area of a segment of a circle of radius 2 bounded by a 15 degree arc and its chord?
(3) What is the $9^{\text {th }}$ power of the matrix

$$
\left(\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right)
$$

4. The roots of $p x^{2}+q x+1$ are $1 / 3$ and $1 / 2$. What are the roots of $q x^{2}-p x-1=0$?

5 Express $\sum_{k=-3}^{k=+3} \frac{1}{9^{k}}$ as a base 3 number.

66 For a point (x, y) on the graph of

$$
4 x^{2}+9 y^{2}-16 x+18 y-11=0
$$

what is the sum of the distances from (x, y) to the points

$$
(2+\sqrt{5},-1) \text { and }(2-\sqrt{5},-1) ?
$$

7 At a recent Olympics, it was found that the average age of all males was 19 while the average age of all females was 15 . If the average age of all participants was 17 years, 6 months, what was the ratio of females to males?
[8 Name the $76^{\text {th }}$ natural number not divisible by 2 or 7 .
(9) Solve for $x>0$.

$$
2 \log _{4} x=\log _{4} 4+\log _{4}(4 x+9)
$$

10 Solve for x between 0 and π.

$$
4 \sin ^{4}(x)=4 \cos ^{2}(x)-1
$$

11 Find the point in the region defined by
$x, y \geq 0$,
$y \leq 15$,
$x \leq 15$,
$2 x+3 y \leq 57$,
where the function $f(x, y)=6 x+y$ is greatest.

12 Solve the equation $x^{3}-[x]=3$ where $[x]$ is the greatest integer less than or equal to x.

13 Two chess players play a series of matches. The "winner" is the first to win two in a row. If player A has probability P of beating player B in any one match, independently of what happens in other matches, what is the probability A wins?

14 Four of the eight vertices of a cube are vertices of a regular tetrahedron. Find the ratio of the surface area of the cube to the surface area of the tetrahedron.
school Answers - TEAM

WORCESTER POLYTECHNIC INSTITUTE
TWELFTH ANNUAL INVITATIONAL MATH MEET OCTOBER 21, 1999 TEAM EXAM ANSWER SHEET

Team Total

\#CORRECT $\times 3=$	
Individual Totals	

\square

