WORCESTER POLYTECHNIC INSTITUTE NINETEENTH ANNUAL INVITATIONAL MATH MEET
 October 18, 2006
 TEAM EXAM QUESTION SHEET

1. In Pascal's triangle, for the first \mathbf{n} rows, the quotient of the number of integers which are not 1 to the number of integers that are 1 is what?
2. If $\log _{2}\left(\log _{3}\left(\log _{4}(x)\right)\right)=\log _{3}\left(\log _{4}\left(\log _{2}(y)\right)\right)=\log _{4}\left(\log _{2}\left(\log _{3}(\mathrm{z})\right)\right)=0$ then what is the sum of $x+y+z$?
3. What is the value of the real number x such that 64^{x-1} divided by 4^{x-1} is $\mathbf{2 5 6} \mathbf{2}^{2 x}$?
4. The square of an integer is called a perfect square. If \mathbf{x} is a perfect square, what is the next largest perfect square?
5. If \mathbf{r} is positive and the line $\mathbf{x}+\mathbf{y}=\mathbf{r}$ is tangent to the curve $\mathbf{x}^{2}+\mathbf{y}^{2}=\mathbf{r}$ then what is the value of \mathbf{r} ?
6. Assume that \mathbf{p} is a positive integer such that $\mathbf{2}^{\mathbf{p}}-\mathbf{1}$ is prime. Consider the number $\mathbf{n}=\mathbf{2}^{\mathrm{p}-1}\left(2^{\mathrm{p}}-\mathbf{1}\right)$. What is the sum of all divisors of \mathbf{n} ? (not including \mathbf{n} itself)
7. Find the smallest positive integer such that

$$
\sqrt{n}-\sqrt{n-1}<.01
$$

8. A semicircle of radius 4 is formed into a cone by attaching the two radii together. What is the volume of the resulting cone?
9. Find a value for \mathbf{b} so that the following system has solutions

$$
\begin{aligned}
& x+2 y+2 z=1 \\
& x-y+3 z=3 \\
& x+11 y-z=b
\end{aligned}
$$

10. A triangle in R^{3} is determined by the points $\mathbf{Q}_{1:}(2,1,7), \mathbf{Q}_{2:}(5, \mathbf{x}, 7)$ and $\mathbf{Q}_{\mathbf{3}}(5,5,19)$. Find values for \mathbf{x} so that the triangle $\mathbf{Q}_{\mathbf{1}} \mathbf{Q}_{\mathbf{2}} \mathbf{Q}_{\mathbf{3}}$ is a right triangle.
11. The sum of all but one of the interior angles of a convex polygon is $\mathbf{2 5 7 0}$. What is the size of the remaining angle?
12. A number is selected at random from the set of natural numbers. What is the probability that the number is divisible by 3 , not divisible by 5 and divisible by either 4 or 6 ?
13. Where are the foci for the conic section described by the following equation?

$$
9 x^{2}-54 x+16 y^{2}+160 y+337=0
$$

14. It is possible to place positive integers into the 21 vacant squares into the 5×5 square shown below so that the numbers in each row and each column form arithmetic sequences. Find the number that must occupy the empty square marked by an \mathbf{X}.

			X	
	74			
				186
		103		
0				

\qquad

WORCESTER POLYTECHNIC INSTITUTE

NINETEENTH ANNUAL INVITATIONAL MATH MEET
OCTOBER 18, 2006
TEAM EXAM ANSWER SHEET

QUESTION	ION ANSWER	SCORE	QUESTION	ON ANSWER	SCORE
1	$\left(n^{2}-3 n+2\right) /(4 n-2)$		8	$8 \pi \sqrt{3 / 3}$ or $8 \pi / \sqrt{3}$	
2	89		9	$b=-5$	
3	$x=-1 / 3$		10	$\mathrm{x}=1,5,-5 / 4,41$	
4	$\mathrm{x}+2 \mathrm{sqrt}(\mathrm{x})+1$		11	130°	
5	$\mathbf{r}=2$		12	2/15	
6	n		13	($3+/-\mathrm{sqrt}(7),-5$)	
7	2501		14	142	

Team Total

\# CORRECT $\times 3=$	
Individual Totals	

\square

