WORCESTER POLYTECHNIC INSTITUTE

${\it 31st~INVITATIONAL~MATH~MEET}\\ {\it October~16,~2018}\\ {\it INDIVIDUAL~EXAM~QUESTION~SHEET~WITH~ANSWERS}\\$

DIRECTIONS: Please write your answers on the Individual Answer Sheet provided. This part of the contest is 45 minutes long. Questions 1-4 are each worth 1 point. Questions 5-8 are each worth 2 points. Questions 9-11 are each worth 3 points. Calculators and other electronics **MAY NOT** be used.

Problem 1. A 2-dimension region described in polar coordinates is bound by: $\frac{\pi}{2} = \frac{3\pi}{2} = \frac{3\pi}{2}$

a) $\theta = \frac{\pi}{3}$ b) $\theta = \frac{3\pi}{4}$ c) $r \sin(\theta) = 4$ What is it's area?

Ans: $8 + \frac{8}{\sqrt{3}}$

Problem 2. Find x that satisfies $x^2 + y\sqrt{xy} = 10$ and $y^2 + x\sqrt{xy} = 20$.

Ans: $x = \frac{\sqrt{10}}{3}$

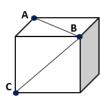
Problem 3. If $x^{11} + a^{11}$ is divided by x + a what is the remainder?

Ans: 0

Problem 4. Factor $1 + x^6$ as completely as possible over the Reals.

Ans:
$$(1+x^2)(x^2+\sqrt{3}x+1)(x^2-\sqrt{3}x+1)$$

Problem 5. Simplify as much as possible:


$$\sin^8(x) + 6\sin^4(x)\cos^4(x) + 4\cos^2(x)\sin^6(x) + 2\cos^8(x) + 4\sin^2(x)\cos^6(x)$$

Ans: 3

Problem 6. If $\sqrt{4+x} + \sqrt{10-x} = 6$. What is the value of $\sqrt{(4+x)(10-x)}$?

Ans: 11

Problem 7. A cube is illustrated in the following diagram.

How many degrees measures the angle < ABC?

Ans: 60°

Problem 8. An isosceles right triangle is removed from each corner of a square piece of paper so that a rectangle remains. If the total area of the cut-off pieces is 200, what is the length of a diagonal of the rectangle?

Ans: 20

Problem 9. One circle has radius of 5 and center at (0,5). A second circle has radius of 12 and center at (12,0). What is the length of the radius of a third circle that passes through the center of the second circle and both points of intersection of the first two circles?

Ans: $\frac{13}{2}$

Problem 10. If a, b and c are all positive integer powers of 2 and it is given that $a^3 + b^4 = c^5$, what is the least possible value of a + b + c?

Ans: 352

Problem 11. Find all positive x which satisfy

 $\log_2 x \log_4 x \log_6 x = \log_2 x \log_4 x + \log_2 x \log_6 x + \log_4 x \log_6 x.$

Ans: x = 1, x = 48