WPI Department of Mathematical Sciences 503 GCE

Name: \qquad

Exercise 1:

Let $E:=[0,1]-S_{\mathbb{Q}}=[0,1] \cap\left(S_{\mathbb{Q}}\right)^{\text {c }}$ where $S_{\mathbb{Q}}:=\left\{x \in[0,1] \mid x=\sqrt{p} / q\right.$ for some $\left.p, q \in \mathbb{Z}^{+}\right\}$. Prove or disprove: There exists a closed, uncountable subset $F \subset E$.

Exercise 2:
For x in $[-1,1]$ set $P_{n}(x)=c_{n}\left(1-x^{2}\right)^{n}$ where c_{n} is such that $\int_{-1}^{1} P_{n}=1$.
(i). Show that there is a positive constant C such that $c_{n} \leq C \sqrt{n}$.
(ii). Let f be a real valued continuous function on $[0,1]$ such that $f(0)=f(1)=0$. Set for x in $[0,1]$

$$
f_{n}(x)=\int_{0}^{1} P_{n}(x-t) f(t) d t
$$

Show that f_{n} is uniformly convergent to f.
Hint: Extend f to a function from \mathbb{R} to \mathbb{R} by zero.
(iii). Let g be in $L^{1}((0,1))$. Defining $g_{n}(x)=\int_{0}^{1} P_{n}(x-t) g(t) d t$, is g_{n} uniformly convergent to g in (0,1) ? Does g_{n} converge to g in $L^{1}((0,1))$?

Exercise 3:
Give an example of $f_{n}, f: \mathbb{R} \rightarrow[0, \infty)$ such that $f_{n} \in L^{1}(\mathbb{R})$ for every $n \in \mathbb{N}, f \in L^{2}(\mathbb{R})$, $f_{n} \leq f$ for every $n \in \mathbb{N}, f_{n} \rightarrow 0$ a.e., and $\int f_{n} \nrightarrow 0$.

