WPI Department of Mathematical Sciences 503 GCE

Name:_____

Exercise 1:

Let $E := [0,1] - S_{\mathbb{Q}} = [0,1] \cap (S_{\mathbb{Q}})^c$ where $S_{\mathbb{Q}} := \{x \in [0,1] \mid x = \sqrt{p}/q \text{ for some } p, q \in \mathbb{Z}^+\}$. Prove or disprove: There exists a closed, uncountable subset $F \subset E$.

$\underline{\text{Exercise } 2}$:

For x in [-1, 1] set $P_n(x) = c_n(1 - x^2)^n$ where c_n is such that $\int_{-1}^1 P_n = 1$. (i). Show that there is a positive constant C such that $c_n \leq C\sqrt{n}$. (ii). Let f be a real valued continuous function on [0, 1] such that f(0) = f(1) = 0. Set for x in [0, 1]

$$f_n(x) = \int_0^1 P_n(x-t)f(t)dt$$

Show that f_n is uniformly convergent to f.

Hint: Extend f to a function from \mathbb{R} to \mathbb{R} by zero.

(iii). Let g be in $L^1((0,1))$. Defining $g_n(x) = \int_0^1 P_n(x-t)g(t)dt$, is g_n uniformly convergent to g in (0,1)? Does g_n converge to g in $L^1((0,1))$?

<u>Exercise 3</u>:

Give an example of $f_n, f : \mathbb{R} \to [0, \infty)$ such that $f_n \in L^1(\mathbb{R})$ for every $n \in \mathbb{N}, f \in L^2(\mathbb{R}), f_n \leq f$ for every $n \in \mathbb{N}, f_n \to 0$ a.e., and $\int f_n \neq 0$.