August, 2018

Exercise 1:

Let X and Y be two metric spaces and f a mapping from X to Y.
(i). Show that f is continuous if and only if for every subset A of $X, f(\bar{A}) \subset \overline{f(A)}$.
(ii). Prove or disprove: assume that f is injective. Then f is continuous if and only if for every subset A of $X, f(\bar{A})=\overline{f(A)}$.
(iii). Prove or disprove: assume that X is compact. Then f is continuous if and only if for every subset A of $X, f(\bar{A})=\overline{f(A)}$.

Exercise 2:

Let $K \subset \mathbb{R}$ have finite measure and let $f \in L^{\infty}(\mathbb{R})$. Show that the function F defined by

$$
F(x):=\int_{K} f(x+t) d t
$$

is uniformly continuous on \mathbb{R}.

Exercise 3:

Let $\left\{f_{n}\right\}$ be a sequence in $L^{1}(\mathbb{R})$ such that $f_{n} \rightarrow 0$ a.e.
(i) Show that if $\left\{f_{2 n}\right\}$ is increasing and $\left\{f_{2 n+1}\right\}$ is decreasing, then

$$
\int f_{n} \rightarrow 0
$$

(ii) Prove or disprove: if $\left\{f_{k n}\right\}$ is decreasing for every prime number k, then

$$
\int f_{n} \rightarrow 0
$$

(Note on notation: e.g., if $k=2$, then $\left\{f_{k n}\right\}=\left\{f_{2 n}\right\}$. Note also that 1 is not prime).

