GCE: 503, Analysis and measure theory May 2018 No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:

Let (X, ρ) be a metric space and K_n a sequence of compact subsets of X such that $K_{n+1} \subset K_n$. Set

$$d_n = \sup\{\rho(x, y) : x \in K_n, y \in K_n\}.$$

Assuming that d_n converges to zero show that $\bigcap_{n=1}^{\infty} K_n$ is a singleton.

<u>Exercise 2</u>:

(ii). Let [a, b] be an interval in \mathbb{R} . If \tilde{f} is continuous on [a, b], g is differentiable on [a, b] and monotonic, and g' is continuous on [a, b], show that there is a c in [a, b] such that

$$\int_{a}^{b} \tilde{f}g = g(a) \int_{a}^{c} \tilde{f} + g(b) \int_{c}^{b} \tilde{f}$$

Hint: Introduce $F(x) = \int_a^x \tilde{f}$ and integrate by parts.

(ii). Show that if g is as specified above and f is in $L^1([a, b])$, there is a c in [a, b] such that

$$\int_{a}^{b} fg = g(a) \int_{a}^{c} f(b) \int_{c}^{b} f(b)$$

Exercise 3:

Let $\{f_n\}$ be a sequence of functions $f_n: [0,1] \to \mathbb{R}$.

(i) Define equicontinuity for this sequence.

(ii) Show that if each f_n is differentiable on [0, 1] and $|f'_n(x)| \leq 1$ for all x in [0, 1] and $n \in \mathbb{N}$, the sequence is equicontinuous.

(iii) Suppose the sequence is uniformly bounded and that (ii) holds. Show that f_n has a subsequence which converges uniformly to a continuous function.

(iv) Show through an example that the limit may not be differentiable.

Exercise 4:

Let f be a lebesgue measurable function such that

$$\int_0^1 f(x)e^{Kx}dx = 0$$

for all K = 1, 2, 3, ...Show that necessarily f(x) = 0 for almost every $0 \le x \le 1$.