Robotic manipulators in interventional medicine and surgery

Loris Fichera
Cognitive Medical Technology Lab
Robotics Engineering Program
Department of Computer Science
Worcester Polytechnic Institute
Loris Fichera, Ph.D.
Assistant Professor
in Computer Science, Robotics Engineering

Academic Background:
Postdoc in Mechanical Engineering, Vanderbilt University - 2017
PhD in Robotics, Cognition and Interaction Technologies, IIT - 2015
BS/MS in Computer Engineering, University of Catania – 2011
Liceo Scientifico Stanislao Cannizzaro, Vittoria RG
Class of 2005

My high school math teacher
Robotic technology today

da Vinci surgical System
(© Intuitive Surgical, Inc.)
The first surgical robot
Robot kinematics

Goal: describe the *pose* of the robot (position and orientation)

Fig. 1: PUMA 560 in the zero position with attached coordinates frames shown17

https://www.youtube.com/watch?v=tjOhGqOHfhg
Robot kinematics

Goal: describe the *pose* of the robot (position and orientation)

Transformation matrix between two consecutive joints:

\[T_{i+1}^i = \begin{bmatrix} n_x & o_x & a_x & p_x \\ n_y & o_y & a_y & p_y \\ n_z & o_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

Transformation between robot base and end effector:

\[T_0^6 = T_0^1 T_1^2 T_2^3 T_3^4 T_4^5 T_5^6 \]

Fig. 1: PUMA 560 in the zero position with attached coordinates frames shown\(^1\)
It may get complex very quickly...

\[
0^T \mathbf{r} = \begin{bmatrix}
0 & 0 & 0 & p_x \\
0 & 0 & 0 & p_y \\
0 & 0 & 0 & p_z \\
1 & 1 & 1 & 1
\end{bmatrix}
\]

\[
\begin{align*}
0^T r_1 &= c_1[c_{23}(c_4c_5c_6 - s_4s_5) - s_{23}s_5c_5] + s_1(s_4c_5c_6 + c_4s_6), \\
0^T r_2 &= s_1[c_{23}(c_4c_5c_6 - s_4s_5) - s_{23}s_5c_6] - c_1(s_4c_5c_6 + c_4s_6), \\
0^T r_3 &= -s_{23}(c_4c_5c_6 - s_4s_6) - c_{23}s_5c_6, \\
0^T r_4 &= s_1[c_{23}(-c_4c_5s_6 + s_4c_6) + s_{23}s_5s_6] + s_1(c_4c_6 - s_4c_5s_6), \\
0^T r_5 &= s_1[c_{23}(-c_4c_5s_6 + s_4c_6) + s_{23}s_5s_6] - c_1(c_4c_6 - s_4c_5s_6), \\
0^T r_6 &= -s_{23}(-c_4c_5s_6 - s_4c_6) + c_{23}s_5s_6, \\
0^T r_7 &= -c_1(c_{23}c_4s_5 + s_{23}c_5) - s_1s_4s_5, \\
0^T r_8 &= -s_1(c_{23}c_4s_5 + s_{23}c_5) + c_1s_4s_5, \\
0^T r_9 &= s_{23}c_4s_5 - c_{23}c_5, \\
0^T r_{10} &= c_1[a_2c_2 + a_3c_{23} - d_4s_{23}] - d_3s_1, \\
0^T r_{11} &= s_1[a_2c_2 + a_3c_{23} - d_4s_{23}] + d_3c_1, \\
0^T r_{12} &= -a_3s_{23} - a_2s_2 - d_4c_{23}, \\
\end{align*}
\]

Fig. 1: PUMA 560 in the zero position with attached coordinates frames shown\(^7\)
Inverse Kinematics

Goal: calculate the joint angles for a desired pose

\[
\begin{align*}
 r_{11} &= c_1 [c_{23}(c_4c_5c_6 - s_4s_5) - s_23s_5c_5] + s_1(s_4c_5c_6 + c_4s_6), \\
 r_{21} &= s_1 [c_{23}(c_4c_5c_6 - s_4s_6) - s_23s_5c_6 - c_1(s_4c_5c_6 + c_4s_6), \\
 r_{31} &= -s_23(c_4c_5c_6 - s_4s_6) - c_23s_5c_6, \\
 r_{12} &= c_1 [c_{23}(-c_4c_5s_6 - s_4c_6) + s_23s_5s_6] + s_1(c_4c_6 - s_4c_5s_6), \\
 r_{22} &= s_1 [c_{23}(-c_4c_5s_6 - s_4c_6) + s_23s_5s_6] - c_1(c_4c_6 - s_4c_5s_6), \\
 r_{32} &= -s_23(-c_4c_5s_6 - s_4c_6) + c_23s_5s_6, \\
 r_{13} &= -c_1(c_23c_4s_5 + s_23c_5) - s_1s_4s_5, \\
 r_{23} &= -s_1(c_23c_4s_5 + s_23c_5) + c_1s_4s_5, \\
 r_{33} &= s_23c_4s_5 - c_23c_5, \\
 p_x &= c_1 [a_2c_2 + a_3c_{23} - d_4s_{23}] - d_3s_1, \\
 p_y &= s_1 [a_2c_2 + a_3c_{23} - d_4s_{23}] + d_3c_1, \\
 p_z &= -a_3s_{23} - a_2s_2 - d_4c_{23}.
\end{align*}
\]
A geometric example

\[\mathbf{W} = (p_{Wx}, p_{Wy}) \]

\[\theta_1 = ? \quad \theta_2 = ? \]

Law of Cosines

\[a^2 = b^2 + c^2 - 2bc \cos A \]

\[\cos A = \frac{b^2 + c^2 - a^2}{2bc} \]

\[\cos(\pi - \theta_2) = \frac{a_1^2 + a_2^2 - (p_{Wx}^2 + p_{Wy}^2)}{2a_1a_2} \]

\[\cos(\theta_2) = -\frac{a_1^2 + a_2^2 - (p_{Wx}^2 + p_{Wy}^2)}{2a_1a_2} \]
A geometric example

\[\vec{W} = (p_{Wx}, p_{Wy}) \]

\[\theta_1 = \alpha \pm \beta \]

\[\alpha = \tan^{-1} \left(\frac{p_{Wy}}{p_{Wx}} \right) \]

\[\beta = \cos^{-1} \left(\frac{a_1^2 + p_x^2 + p_y^2 - a_2^2}{2a_1 \sqrt{p_{Wx}^2 + p_{Wy}^2}} \right) \]

\[\cos(\theta_2) = -\frac{a_1^2 + a_2^2 - (p_{Wx}^2 + p_{Wy}^2)}{2a_1 a_2} \]
Inverse Kinematics

Even if we find an analytic inverse, the problem may still have zero/multiple/infinite solutions!

\[
\begin{align*}
 r_{11} &= c_1 [c_{23} (c_4 c_5 c_6 - s_4 s_5) - s_{23} s_5 c_5] + s_1 (s_4 c_5 c_6 + c_4 s_5), \\
 r_{21} &= s_1 [c_{23} (c_4 c_5 c_6 - s_4 s_5) - s_{23} s_5 c_6 - c_1 (s_4 c_5 c_6 + c_4 s_5)], \\
 r_{31} &= -s_{23} (c_4 c_5 c_6 - s_4 s_6) - c_{23} s_5 c_6, \\
 r_{12} &= c_1 [c_{23} (-c_4 c_5 s_6 - s_4 c_6) + s_{23} s_5 s_6] + s_1 (c_4 c_6 - s_4 c_5 s_6), \\
 r_{22} &= s_1 [c_{23} (-c_4 c_5 s_6 - s_4 c_6) + s_{23} s_5 s_6] - c_1 (c_4 c_6 - s_4 c_5 s_6), \\
 r_{32} &= -s_{23} (-c_4 c_5 s_6 - s_4 c_6) + c_{23} s_5 s_6, \\
 r_{13} &= -c_1 (c_{23} c_4 s_5 + s_{23} c_5) - s_1 s_4 s_5, \\
 r_{23} &= -s_1 (c_{23} c_4 s_5 + s_{23} c_5) + c_1 s_4 s_5, \\
 r_{33} &= s_{23} c_4 s_5 - c_{23} c_5,
\end{align*}
\]

\[
\begin{align*}
 p_x &= c_1 [a_2 c_2 + a_3 c_{23} - d_4 s_{23}] - d_3 s_1, \\
 p_y &= s_1 [a_2 c_2 + a_3 c_{23} - d_4 s_{23}] + d_3 c_1, \\
 p_z &= -a_3 s_{23} - a_2 s_2 - d_4 c_{23}.
\end{align*}
\]

https://www.youtube.com/watch?v=0nZ7vTxpLQU
Endoscope kinematics

Endoscope kinematics

\[
T_{j+1}^j = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & \cos(\kappa s) & -\sin(\kappa s) & (\cos(\kappa s) - 1)/\kappa \\
0 & \sin(\kappa s) & \cos(\kappa s) & \sin(\kappa s)/\kappa \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]
Continuum robots in surgery

Gilbert 2016

Swaney 2017
The Rise of Robots in the Operating Room | Dr. Robert Webster III | TEDxNashvilleSalon

https://www.youtube.com/watch?v=Mr4xEH11N5A
Robotic manipulators in interventional medicine and surgery

Loris Fichera
Cognitive Medical Technology Lab
Robotics Engineering Program
Department of Computer Science
Worcester Polytechnic Institute