THE ACTUARIAL CAREER

Kelly McManus, FSA, MAAA

John Hancock Financial Services

What Is An Actuary?

"Actuaries are highly sought-after professionals who develop and communicate solutions for complex financial issues."

What Do Actuaries Do?

Where Do Actuaries Work?

Insurance

Life Insurance

Health Insurance

Property-Casualty

Other

Banking

Investments

Consulting

Government

- Life, Health, Annuities, General Insurance, Investments
- 11,851 Associates
- 17,310 Fellows

- Property and Casualty
- 2,206 Associates
- 4,709 Fellows

Becoming an Associate of the Society of Actuaries

Source: soa.org

Becoming a Fellow of the Society of Actuaries

More at soa.org

Source: soa.org

Probability Law of total probability, discrete and continuous distributions, univariate and multivariate distributions, basic knowledge of insurance and risk management

	Р	Probability	Law of total probability, discrete and continuous distributions, univariate and multivariate distributions, basic knowledge of insurance and risk management
	FM		Fundamental concepts of financial mathematics, applied to calculating present and accumulated values of cash flows.

Р	Probability	Law of total probability, discrete and continuous distributions, univariate and multivariate distributions, basic knowledge of insurance and risk management
FM		Fundamental concepts of financial mathematics, applied to calculating present and accumulated values of cash flows.
IFM	Investment and Financial Markets	Theoretical basis of corporate finance, financial models, and the application of those models to insurance and other financial risks

Р	Probability	Law of total probability, discrete and continuous distributions, univariate and multivariate distributions, basic knowledge of insurance and risk management	
FM	Financial Mathematics	Fundamental concepts of financial mathematics, applied to calculating present and accumulated values of cash flows.	
IFM	Investment and Financial Markets	Theoretical basis of corporate finance, financial models, and the application of those models to insurance and other financial risks	
LTAM	Long-Term Actuarial Mathematics	Theoretical basis of contingent payment models and the application of those models to insurance and other financial risks	

Р	Probability	Law of total probability, discrete and continuous distributions, univariate and multivariate distributions, basic knowledge of insurance and risk management
FM	Financial Mathematics	Fundamental concepts of financial mathematics, applied to calculating present and accumulated values of cash flows.
IFM	Investment and Financial Markets	Theoretical basis of corporate finance, financial models, and the application of those models to insurance and other financial risks
LTAM	Long-Term Actuarial Mathematics	Theoretical basis of contingent payment models and the application of those models to insurance and other financial risks
STAM		Frequency and severity models, estimating parameters, aggregate models, credibility models, and basic methods of pricing and reserving for short-term insurance coverages.

	Р	Probability	Law of total probability, discrete and continuous distributions, univariate and multivariate distributions, basic knowledge of insurance and risk management
	FM		Fundamental concepts of financial mathematics, applied to calculating present and accumulated values of cash flows.
	IFM	Investment and Financial Markets	Theoretical basis of corporate finance, financial models, and the application of those models to insurance and other financial risks
	LTAM	Long-Term Actuarial Mathematics	Theoretical basis of contingent payment models and the application of those models to insurance and other financial risks
	STAM	Actuarial	Frequency and severity models, estimating parameters, aggregate models, credibility models, and basic methods of pricing and reserving for short-term insurance coverages.
	SRM	RISK MODELINE	Introduction to methods and models for analyzing data. Regression models, time series models, principal components analysis, decision trees, and cluster analysis

Source: soa.org

A Day in the Life

7:30 AM: Wake up

8:30 AM: Commute to work

9:00 AM: Greet coworkers, catch up on

people's evenings from the night before, and

settle in to the workstation

9:10 AM: Go through emails a accordingly. Glance at the calcout the day.

10:00 AM: Campus recruitme

meeting

11:00 AM: Catch up with interask if they have questions on

11:30 AM: One on One meetir

manager

12:00 PM: Lunch with a group

A Day in the Life

1:30 PM: Catch up on emails, send out agenda for my 3 p.m. meeting

2:00 PM: Get status updates from resources on their projects and tasks. Revise/update

digital agenda accordingly.

3:00 PM: Meet with internal Audit

4:00 PM: Starbucks

5:30 PM: Gym

6:30 PM: Commute home

7:00 PM: Dinner

8:00 PM: Netflix

Quick Facts: Actuaries

2017 Median Pay	\$101,560 per year \$48.83 per hour	
Typical Entry-Level Education	Bachelor's degree	
On-the-job Training	Long-term on-the-job training	
Number of Jobs, 2016	23,600	
Job Outlook, 2016-26	22% (Much faster than average)	
Employment Change, 2016-26	5,300	

Source: bls.gov

Important Qualities Analytical Skills Communication Math Skills Skills Interpersonal Computer Skills Skills Problem-Solving Skills

Typical Student Programs

Study Hours

2 Year rotations

Exam raises

Bonuses with credentials

Seminars

Exam Materials

Celebrations

Insurance Product Pricing at John Hancock

Sample Problem

An insurance company determines that N, the number of claims received in a week, is a random variable with $P[N = n] = \frac{1}{2^{n+1}}$, where $n \ge 0$. The company also determines that the number of claims received in a given week is independent of the number of claims received in any other week. Determine the probability that exactly seven claims will be received during a given two week period.

$$(A)^{1}/_{256}$$

$$(B)^{1}/_{128}$$

(C)
$$^{7}/_{512}$$

(D)
$$\frac{1}{64}$$

$$(E)^{1}/_{32}$$

Solution: D

Let N_1 and N_2 denote the number of claims during weeks one and two, respectively. Then since N_1 and N_2 are independent,

$$\Pr[N_1 + N_2 = 7] = \sum_{n=0}^{7} \Pr[N_1 = n] \Pr[N_2 = 7 - n]$$

$$= \sum_{n=0}^{7} \left(\frac{1}{2^{n+1}}\right) \left(\frac{1}{2^{8-n}}\right)$$

$$= \sum_{n=0}^{7} \frac{1}{2^9}$$

$$= \frac{8}{2^9} = \frac{1}{2^6} = \frac{1}{64}$$

Questions

Kelly McManus, FSA, MAAA

John Hancock Financial Services

