August 2018

Worcester Polytechnic Institute Department of Mathematical Sciences

General Comprehensive Examination LINEAR ALGEBRA

Print Name:

__ Sign: ____

Problem 1: Let $\mathbf{P}_k(x)$ denote the vector space of polynomials with real coefficients of degree k or less in x. Consider the linear transformation T : $\mathbf{P}_3(x) \to \mathbf{P}_1(x)$ given by second differentiation, i.e., by $\mathsf{T}(p) = p'' \in P_1(x)$ for $p \in P_3(x)$.

Find the matrix representation of T with respect to the bases $\{1 + x, 1 - x, x + x^2, x^2 - x^3\}$ for $P_3(x)$ and $\{1, x\}$ for $P_1(x)$.

Problem 2: Let
$$A = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ -1 & -1 & 1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & -4 & -4 \end{pmatrix}$$

(a) What is the rank of A?

(b) What is the determinant of A?

(c) Find the eigenvalues and eigenvectors of A.

(d) Find the characteristic polynomial of A.

- (e) Find the transformation matrix M and its inverse such that $J = M^{-1}AM$ is the Jordan canonical form of A.
- (f) Does it make a difference if you do your computations over the real numbers or over the complex numbers? Justify your answer.

Problem 3: This problem involves the matrix exponential $\exp(M)$ for a square matrix M.

(a) Compute $\exp(At)$ if $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$.

(b) Prove that, if AB = BA, then $\exp(A) \exp(B) = \exp(A + B)$.

(c) Prove that, if A is skew-symmetric (i.e., $A^{\top} = -A$) then $\exp(A)$ is an orthogonal matrix.

Problem 4: Let A be an $n \times n$ complex Hermitian matrix with largest eigenvalue λ_1 . Let B be the $(n-1) \times (n-1)$ matrix obtained by deleting

the first row and first column of A. If μ_1 is the largest eigenvalue of B, prove that $\mu_1 \leq \lambda_1$.

Problem 5: Suppose that T is an $n \times n$ linear transformation over the field \mathbb{Q} of rational numbers satisfying $T^2 = T^{-1} - T$. Prove that $n \equiv 0 \mod 3$.

Problem 6: Let $V = C^{\infty}([0, 1])$ be the real inner product space of infinitely differentiable functions on the interval [0, 1] with inner product

$$\langle f,g \rangle := \int_0^1 f(t)g(t) \, dt \; .$$

The differential operator $\mathsf{T} = \frac{d}{dt}$ is a linear operator on V. The Riesz Representation Theorem guarantees the existence and uniqueness of the *adjoint* operator T^* of T . Give the meaning of T^* and in the special case where f(0) = f(1) = 0, find a simple expression for the function T^*f .