General Comprehensive Examination
 Linear Algebra

Print Name: \qquad Sign: \qquad

Problem 1: Let $\mathbf{P}_{k}(x)$ denote the vector space of polynomials with real coefficients of degree k or less in x. Consider the linear transformation T: $\mathbf{P}_{3}(x) \rightarrow \mathbf{P}_{1}(x)$ given by second differentiation, i.e., by $\mathbf{T}(p)=p^{\prime \prime} \in P_{1}(x)$ for $p \in P_{3}(x)$.

Find the matrix representation of T with respect to the bases $\left\{1+x, 1-x, x+x^{2}, x^{2}-x^{3}\right\}$ for $P_{3}(x)$ and $\{1, x\}$ for $P_{1}(x)$.

Problem 2: Let $A=\left(\begin{array}{rrrrrr}1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ -1 & -1 & 1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & -4 & -4\end{array}\right)$.
(a) What is the rank of A ?
(b) What is the determinant of A ?
(c) Find the eigenvalues and eigenvectors of A.
(d) Find the characteristic polynomial of A.
(e) Find the transformation matrix M and its inverse such that $J=M^{-1} A M$ is the Jordan canonical form of A.
(f) Does it make a difference if you do your computations over the real numbers or over the complex numbers? Justify your answer.

Problem 3: This problem involves the matrix $\operatorname{exponential~} \exp (M)$ for a square matrix M.
(a) Compute $\exp (A t)$ if $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$.
(b) Prove that, if $A B=B A$, then $\exp (A) \exp (B)=\exp (A+B)$.
(c) Prove that, if A is skew-symmetric (i.e., $A^{\top}=-A$) then $\exp (A)$ is an orthogonal matrix.

Problem 4: Let A be an $n \times n$ complex Hermitian matrix with largest eigenvalue λ_{1}. Let B be the $(n-1) \times(n-1)$ matrix obtained by deleting
the first row and first column of A. If μ_{1} is the largest eigenvalue of B, prove that $\mu_{1} \leq \lambda_{1}$.

Problem 5: Suppose that T is an $n \times n$ linear transformation over the field \mathbb{Q} of rational numbers satisfying $\mathbf{T}^{2}=\mathrm{T}^{-1}-\mathrm{T}$. Prove that $n \equiv 0 \bmod 3$.

Problem 6: Let $V=C^{\infty}([0,1])$ be the real inner product space of infinitely differentiable functions on the interval $[0,1]$ with inner product

$$
\langle f, g\rangle:=\int_{0}^{1} f(t) g(t) d t
$$

The differential operator $\mathrm{T}=\frac{d}{d t}$ is a linear operator on V. The Riesz Representation Theorem guarantees the existence and uniqueness of the adjoint operator T^{*} of T . Give the meaning of T^{*} and in the special case where $f(0)=f(1)=0$, find a simple expression for the function $\mathrm{T}^{*} f$.

