GCE: 502, Linear Algebra

 May 2018No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:

Let $\mathbb{R}^{n \times n}$ be the set of n by n real matrices. Let V be the set of invertible matrices in $\mathbb{R}^{n \times n}$.
(i). Show that V is open in $\mathbb{R}^{n \times n}$.
(ii). Show that the operator A from V to $\mathbb{R}^{n \times n}$ defined by $A(V)=V^{-1}$ is continuous.
(iii). Show that V is dense in $\mathbb{R}^{n \times n}$.

Exercise 2:
Suppose that $M \in \mathrm{GL}_{n}(\mathbb{R})$ satisfies $M^{k}=I_{n}$ for some $k, n \in \mathbb{Z}$.
(i). Prove that $\operatorname{det}(M) \in\{ \pm 1\}$.
(ii). Prove that the minimal polynomial of M divides $x^{k}-1$. Does the same conclusion hold for the characteristic polynomial?
(iii). Let d_{1} be the dimension of the eigenspace with eigenvalue 1 . If k is odd, prove that $n-d_{1}$ is even.
(iv). Prove that condition (iii) is sufficient, that is, for any $n, d_{1} \in \mathbb{N}$ satisfying

1. $n>0$
2. $n-d_{1} \geq 0$
3. $n-d_{1} \equiv 0 \bmod 2$
and for any odd k there exists $M \in \mathrm{GL}_{n}(\mathbb{R})$ with a d_{1}-dimensional eigenspace of eigenvalue 1 , which satisfies $M^{k}=I_{n}$.

Exercise 3:

Compute the cofactor matrix of the $n \times n$ matrix A whose entries are -1 off diagonal and $n-1$ on the main diagonal. What can you conclude about the invertibility of A?

Exercise 4:

Let V be a complex inner product space and let $\tau: V \rightarrow V$ be a linear operator on V with adjoint τ^{*}. Assume that subspaces W_{1}, \ldots, W_{k} of V are all τ-invariant subspaces (i.e., that $\tau\left(W_{i}\right) \subseteq W_{i}$ for $\left.i=1, \ldots, k\right)$. Recall the orthogonal complement of W_{i} is denoted by

$$
W_{i}^{\perp}=\left\{v \in V \mid\left(\forall w \in W_{i}\right)(\langle v, w\rangle=0)\right\} .
$$

Prove that both $\sum_{i=1}^{k} W_{i}^{\perp}$ and $\cap_{i=1}^{k} W_{i}^{\perp}$ are τ^{*}-invariant.

Exercise 5:

Consider the space $\operatorname{Mat}_{n}(\mathbb{C})$ of $n \times n$ matrices with complex entries with Frobenius norm $\|A\|=\sqrt{\operatorname{tr}\left(A A^{*}\right)}$ where $*$ denotes the conjugate transpose map. Given $A \in \operatorname{Mat}_{n}(\mathbb{C})$, find a simple expression for the Hermitian matrix H which minimizes $\|A-H\|$.

