GCE: 502, Linear Algebra May 2018 No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:

Let $\mathbb{R}^{n \times n}$ be the set of n by n real matrices. Let V be the set of invertible matrices in $\mathbb{R}^{n \times n}$.

- (i). Show that V is open in $\mathbb{R}^{n \times n}$.
- (ii). Show that the operator A from V to $\mathbb{R}^{n \times n}$ defined by $A(V) = V^{-1}$ is continuous.
- (iii). Show that V is dense in $\mathbb{R}^{n \times n}$.

Exercise 2: Suppose that $M \in \operatorname{GL}_n(\mathbb{R})$ satisfies $M^k = I_n$ for some $k, n \in \mathbb{Z}$.

(i). Prove that $det(M) \in \{\pm 1\}$.

(ii). Prove that the minimal polynomial of M divides $x^k - 1$. Does the same conclusion hold for the characteristic polynomial?

(iii). Let d_1 be the dimension of the eigenspace with eigenvalue 1. If k is odd, prove that $n - d_1$ is even.

(iv). Prove that condition (iii) is sufficient, that is, for any $n, d_1 \in \mathbb{N}$ satisfying

- 1. n > 0
- 2. $n d_1 \ge 0$
- 3. $n d_1 \equiv 0 \mod 2$

and for any odd k there exists $M \in \operatorname{GL}_n(\mathbb{R})$ with a d_1 -dimensional eigenspace of eigenvalue 1, which satisfies $M^k = I_n$.

Exercise 3:

Compute the cofactor matrix of the $n \times n$ matrix A whose entries are -1 off diagonal and n-1 on the main diagonal. What can you conclude about the invertibility of A?

Exercise 4:

Let V be a complex inner product space and let $\tau : V \to V$ be a linear operator on V with adjoint τ^* . Assume that subspaces W_1, \ldots, W_k of V are all τ -invariant subspaces (i.e., that $\tau(W_i) \subseteq W_i$ for $i = 1, \ldots, k$). Recall the orthogonal complement of W_i is denoted by

$$W_i^{\perp} = \{ v \in V \mid (\forall w \in W_i) \ (\langle v, w \rangle = 0) \}.$$

Prove that both $\sum_{i=1}^{k} W_i^{\perp}$ and $\bigcap_{i=1}^{k} W_i^{\perp}$ are τ^* -invariant.

 $\underline{\text{Exercise } 5}$:

Consider the space $\operatorname{Mat}_n(\mathbb{C})$ of $n \times n$ matrices with complex entries with Frobenius norm $||A|| = \sqrt{\operatorname{tr}(AA^*)}$ where * denotes the conjugate transpose map. Given $A \in \operatorname{Mat}_n(\mathbb{C})$, find a simple expression for the Hermitian matrix H which minimizes ||A - H||.