WPI Mathematical Sciences Ph.D. General Comprehensive Exam MA 540 Probability and Mathematical Statistics-I
 May, 2018

Note: Please make sure to write down your thinking process in bullet points even if you cannot solve the problems perfectly.

1. (a) Let $f(u, v)=1$ if $0 \leq u \leq e^{-v}, v \geq 0$ and $f(u, v)=0$ otherwise. Find $f(u), f(v), f(u \mid v)$ and $f(v \mid u)$.
(b) Let $X, Y \stackrel{i n d}{\sim} \operatorname{Normal}(0,1)$. Suppose $X<Y$, find the joint pdf of X and Y. What is the joint pdf of X and Y if $X=Y$?
2. (a) Let $\log (X) \sim \operatorname{Normal}(0,1)$. Find the pdf of X and $E\left(X^{k}\right)$ for any integer k. Deduce the variance of X.
(b) i. Find a that minimizes $E\left\{(X-a)^{2}\right\}$, where X is a random variable with finite variance. Does your value of a really exist? Explain.
ii. Let X_{1}, \ldots, X_{n} be independent with mean $a \neq 0$ and variance 1. Consider $T=$ $\sum_{i=1}^{n} w_{i} X_{i}$, where w_{1}, \ldots, w_{n} are unknown positive quantities. Suppose $E(T)=a$, find w_{1}, \ldots, w_{n} that minimize $\operatorname{Var}(T)$.
3. Let X be a $\operatorname{Normal}(0,1)$ random variable. Find the pdf or pmf of $Y=X^{n}$, where n is a non-negative integer.
4. Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim}$ Uniform $(0,1)$. Let $X_{(1)}$ and $X_{(n)}$ be the smallest and largest order statistics. Show that $X_{(n)}$ and $1-X_{(1)}$ converge almost surely to 1 as $n \rightarrow \infty$.
5. Let $X>0$ be a random variable with its moment generation function $M(t)$. Show that for all real t such that $M(t)$ exists,

$$
P\left(t X>\epsilon^{2}+\log (M(t))\right) \leq e^{-\epsilon^{2}}
$$

(Here log is the natural logarithm.)
6. Let $F(x)$ be the CDF of a random variable X. Define $Y=F(X)$ (i.e., the CDF transformation), show that if X is discrete, $P(Y \leq y) \leq y$ for any $y \in(0,1)$, and $P(Y \leq y)<y$ for some $y \in(0,1)$.

