WPI Mathematical Sciences Ph.D. General Comprehensive Exam MA 540 Probability and Mathematical Statistics-I May, 2018

Note: Please make sure to write down your thinking process in bullet points even if you cannot solve the problems perfectly.

- 1. (a) Let f(u, v) = 1 if $0 \le u \le e^{-v}$, $v \ge 0$ and f(u, v) = 0 otherwise. Find f(u), f(v), $f(u \mid v)$ and $f(v \mid u)$.
 - (b) Let $X, Y \stackrel{ind}{\sim} \text{Normal}(0, 1)$. Suppose X < Y, find the joint pdf of X and Y. What is the joint pdf of X and Y if X = Y?
- 2. (a) Let $\log(X) \sim Normal(0, 1)$. Find the pdf of X and $E(X^k)$ for any integer k. Deduce the variance of X.
 - (b) i. Find a that minimizes $E\{(X a)^2\}$, where X is a random variable with finite variance. Does your value of a really exist? Explain.
 - ii. Let X_1, \ldots, X_n be independent with mean $a \neq 0$ and variance 1. Consider $T = \sum_{i=1}^n w_i X_i$, where w_1, \ldots, w_n are unknown positive quantities. Suppose E(T) = a, find w_1, \ldots, w_n that minimize $\operatorname{Var}(T)$.
- 3. Let X be a Normal(0,1) random variable. Find the pdf or pmf of $Y = X^n$, where n is a non-negative integer.
- 4. Let $X_1, \ldots, X_n \stackrel{iid}{\sim}$ Uniform (0, 1). Let $X_{(1)}$ and $X_{(n)}$ be the smallest and largest order statistics. Show that $X_{(n)}$ and $1 - X_{(1)}$ converge almost surely to 1 as $n \to \infty$.
- 5. Let X > 0 be a random variable with its moment generation function M(t). Show that for all real t such that M(t) exists,

$$P(tX > \epsilon^2 + \log(M(t))) \le e^{-\epsilon^2}.$$

(Here log is the natural logarithm.)

6. Let F(x) be the CDF of a random variable X. Define Y = F(X) (i.e., the CDF transformation), show that if X is **discrete**, $P(Y \le y) \le y$ for any $y \in (0, 1)$, and $P(Y \le y) < y$ for some $y \in (0, 1)$.