Outline

• Introduction

• Radar: Calculating Distances

• Radar: Calculating Precipitation Intensity

• Calculating Storm Echo Top Heights

• Polar and Cartesian Coordinates

• Mapping Projections
Introduction

• High school math is used for and provides the foundation of work at Lincoln

• Lots of high school math applications to weather radar and forecast generation

• If we didn’t have a good grasp of trigonometry, geometry, algebra, and calculus, we couldn’t do our jobs!
Weather radars are used to detect, locate, and measure intensity of precipitation.
Weather radars are used to detect, locate, and measure intensity of precipitation.
Weather radars are used to detect, locate, and measure intensity of precipitation
Weather radars are used to detect, locate, and measure intensity of precipitation.

WSR-88D
Weather Radar
Calculating Distances

distance = rate * time

\[d = c \frac{t}{2} \]

- **d**: distance
- **c**: speed of light *through air*
- **t**: round-trip time for pulse to hit target and return

If you can measure elapsed time accurately, you can calculate distance accurately!
Calculating Distances (cont.)

\[s_1 = y \]
\[c_1 = x \]

100 km

15°

\[\sin 15° = \frac{y}{100} \]
\[\cos 15° = \frac{x}{100} \]

Note! In reality, radar beams usually bend slightly towards Earth, and the Earth is not flat.
Calculating Precipitation Intensity

Water droplet with diameter d mm

$$Z \propto \sum_i d_i^6$$

Z: Units of mm6m$^{-3}$

$$dBZ = 10 \log_{10} \left(\frac{Z}{1 \text{ mm}^6 \text{m}^{-3}} \right)$$

dBZ: dimensionless
Calculating Storm Echo Top Heights

\[e = h_2 + \frac{18 - r_2}{r_1 - r_2} (h_1 - h_2) \]

\[= 37 \text{ kft} \]

Below 18 dBZ
- \(h_1 = 40 \text{ kft} \)
- \(r_1 = 15 \text{ dBZ} \)

Above 18 dBZ
- \(h_2 = 35 \text{ kft} \)
- \(r_2 = 20 \text{ dBZ} \)
Calculating Storm Echo Top Heights

Similar calculations can be carried out for different ranges and azimuths!
Calculating Storm Echo Top Heights

Similar calculations can be carried out for different ranges and azimuths!
Calculating Storm Echo Top Heights

Similar calculations can be carried out for different ranges and azimuths!
Polar and Cartesian Coordinates

Polar Coordinates

Cartesian Coordinates
Polar and Cartesian Coordinates

Polar Coordinates

Cartesian Coordinates
Converting from Polar to Cartesian

How do we go from a polar coordinate to a point on a Cartesian grid?
Converting from Polar to Cartesian

How do we go from a polar coordinate to a point on a Cartesian grid?
Converting from Polar to Cartesian

How do we go from a polar coordinate to a point on a Cartesian grid?
Converting from Polar to Cartesian

\[
\sin 45^\circ = \frac{y}{r} \\
\cos 45^\circ = \frac{x}{r}
\]
Different organizations can use different mapping projections.

How do we compare forecasts on maps that don’t look the same?

Mercator Projection

Stereographic Projection
Stereographic Projections

A point P on the sphere is mapped to a unique point P' on the plane.

That is, a point P on the Earth is mapped to a unique point P' on the map.
Stereographic Projections

A point P on the sphere is mapped to a unique point P' on the plane.

That is, a point P on the Earth is mapped to a unique point P' on the map.
A point P on the circle is mapped to a unique point P' on the line.
Two ways to find P':

1) Find equation of line from N to P

2) Use similar triangles
Finding Line from N To P

\[y = mx + b \]

Plug in values for N and P:
\[1 = m(0) + b \]
\[0.2 = m(-0.4) + b \]

Solve for \(m \) and \(b \):
\[m = 2, b = 1 \]

Write equation for the line:
\[y = 2x + 1 \]

Find \(x \)-coordinate of \(P' \):
\[-1 = 2(x) + 1 \]
\[x = -1 \]

\(P' \): (-1, -1)
Using similar triangles:
\[
\frac{2}{-x} = \frac{0.8}{0.4}
\]

Cross multiply:
\[
2 \cdot 0.4 = 0.8 \cdot (-x)
\]

\[
0.8 = -0.8x
\]

\[
x = -1
\]

\[
P': (-1, -1)
\]

You could imagine extending these ideas to add another dimension!
Converting Between Projections

If φ is latitude, λ is longitude:

Mercator projection:

\[
x = \lambda
\]
\[
y = \frac{1}{2} \ln \left(\frac{1 + \sin \varphi}{1 - \sin \varphi} \right)
\]

If φ is latitude, λ is longitude, φ_1 is central latitude, λ_0 is central longitude, and R is local radius of Earth:

Stereographic projection:

\[
x = \frac{2 R \cos \varphi \sin(\lambda - \lambda_0)}{1 + \sin \varphi_1 \sin \varphi + \cos \varphi_1 \cos \varphi \cos(\lambda - \lambda_0)}
\]
\[
y = \frac{2 R [\cos \varphi_1 \sin \varphi - \sin \varphi_1 \cos \varphi \cos(\lambda - \lambda_0)]}{1 + \sin \varphi_1 \sin \varphi + \cos \varphi_1 \cos \varphi \cos(\lambda - \lambda_0)}
\]
High school math has many applications to weather radar and forecast generation.

Calculating storm position/intensity and disseminating that information would not be possible without high school math.

Without math, we’d be left sticking our heads out the window for weather information!