Worcester Polytechnic Institute Electronic Theses and Dissertations Collection

Title page for ETD etd-012914-175505


Document Typethesis
Author NameBurford, Evans J
Email Address jburford at wpi.edu
URNetd-012914-175505
TitleMyocyte Derived Cardiac Spheroids for Post Infarct Cardiac Regeneration
DegreeMS
DepartmentBiomedical Engineering
Advisors
  • Glenn Gaudette, Advisor
  • George Pins, Committee Member
  • Marsha Rolle, Committee Member
  • Keywords
  • cardiac myocyte
  • cardiac regeneration
  • Cardiac spheroids
  • Date of Presentation/Defense2014-01-29
    Availability restricted

    Abstract

    Research has shown that autologous progenitor-like cardiac spheroids, when delivered to an infarcted heart, are able to restore mechanical function. These spheroids are made by isolating and expanding autologous cardiac progenitor cells. Though these results are promising, the process for creating cardiac spheroids is inefficient and time consuming, requiring a large amount of cardiac tissue. For every 10,000 cardiac myocytes in the heart there is only one cardiac progenitor cell; requiring a large amount of initial tissue. This clinical limitation could be overcome if cardiac myocytes, which are more abundant than cardiac progenitor cells, could be used to make cardiac spheroids. Research has shown that mesenchymal stem cells when co-cultured with adult cardiac myocytes cause the cardiac myocytes to behave like a progenitor cell. We found that, when co-cultured with mesenchymal stem cells, cardiac mycoytes could be made to form cardiac spheroid bodies. This was done by isolating adult myocytes from rat hearts and co-culturing them with human mesenchymal stem cells. After two weeks, cultures were observed to form spheroid bodies and the number of spheroids formed were compared to a pure myocyte control. Cardiac specific staining confirmed that the spheroids were made from the myocytes. It was also found that the mesenchymal stem cells, when co-cultured in the same well with the myocytes, form significantly more spheroids than myocytes treated with stem cell conditioned media. Further, no other cell type present in the co-cultures are able to create spheroid bodies when co-cultured with mycoytes or stem cells. The ability to create cardiac spheroid like bodies from adult myocytes offers a way to overcome the limitations of the time needed and the large quantity of autologous cardiac tissue required to currently make these types of bodies.

    Files
  • (WPI)Myocyte_Derived_Cardiac_Spheroids_for_Post_Infarct_Cardiac_Regeneration.pdf

    (WPI) indicates that a file or directory is accessible from the WPI campus network only.


  • Browse by Author | Browse by Department | Search all available ETDs

    [WPI] [Library] [Home] [Top]

    Questions? Email etd-questions@wpi.edu
    Maintained by webmaster@wpi.edu