Worcester Polytechnic Institute Electronic Theses and Dissertations Collection

Title page for ETD etd-030107-115645


Document Typedissertation
Author NameGaubatz, Gunnar
Email Address gunnar at gaubatz.net
URNetd-030107-115645
TitleTamper-Resistant Arithmetic for Public-Key Cryptography
DegreePhD
DepartmentElectrical & Computer Engineering
Advisors
  • Prof. Dr. Berk Sunar, Advisor
  • Prof. Dr. Brian M. King, Committee Member
  • Prof. Dr. William J. Martin, Committee Member
  • Prof. Dr. Mark G. Karpovsky, Committee Member
  • Prof. Dr. Fred J. Looft, Department Head
  • Keywords
  • Side Channel Attacks
  • Fault Attacks
  • Public-Key Cryptography
  • Error Detection
  • Error Detecting Codes
  • Date of Presentation/Defense2007-03-01
    Availability unrestricted

    Abstract

    Cryptographic hardware has found many uses in many ubiquitous and pervasive security devices with a small form factor, e.g. SIM cards, smart cards, electronic security tokens, and soon even RFIDs. With applications in banking, telecommunication, healthcare, e-commerce and entertainment, these devices use cryptography to provide security services like authentication, identification and confidentiality to the user.

    However, the widespread adoption of these devices into the mass market, and the lack of a physical security perimeter have increased the risk of theft, reverse engineering, and cloning. Despite the use of strong cryptographic algorithms, these devices often succumb to powerful side-channel attacks. These attacks provide a motivated third party with access to the inner workings of the device and therefore the opportunity to circumvent the protection of the cryptographic envelope. Apart from passive side-channel analysis, which has been the subject of intense research for over a decade, active tampering attacks like fault analysis have recently gained increased attention from the academic and industrial research community.

    In this dissertation we address the question of how to protect cryptographic devices against this kind of attacks. More specifically, we focus our attention on public key algorithms like elliptic curve cryptography and their underlying arithmetic structure. In our research we address challenges such as the cost of implementation, the level of protection, and the error model in an adversarial situation. The approaches that we investigated all apply concepts from coding theory, in particular the theory of cyclic codes. This seems intuitive, since both public key cryptography and cyclic codes share finite field arithmetic as a common foundation.

    The major contributions of our research are (a) a generalization of cyclic codes that allow embedding of finite fields into redundant rings under a ring homomorphism, (b) a new family of non-linear arithmetic residue codes with very high error detection probability, (c) a set of new low-cost arithmetic primitives for optimal extension field arithmetic based on robust codes, and (d) design techniques for tamper resilient finite state machines.

    Files
  • ggaubatz.pdf

  • Browse by Author | Browse by Department | Search all available ETDs

    [WPI] [Library] [Home] [Top]

    Questions? Email etd-questions@wpi.edu
    Maintained by webmaster@wpi.edu