Worcester Polytechnic Institute Electronic Theses and Dissertations Collection

Title page for ETD etd-0410103-125803

Document Typedissertation
Author NameBenco, John S
TitleThe Rational Design and Synthesis of Ionophores and Fluoroionophores for the Selective Detection of Monovalent Cations
DepartmentChemistry & Biochemistry
  • W. Grant McGimpsey, Advisor
  • James W. Pavlik, Committee Member
  • Robert E. Connors, Committee Member
  • Joseph S. Foos, Committee Member
  • James P. Dittami, Department Head
  • Keywords
  • ionophore
  • fluoroionophore
  • Date of Presentation/Defense2003-04-07
    Availability unrestricted


    The rational design, synthesis and complexation characteristics of several monovalent cation-selective ligands are described. Molecular modeling employing a combination of dynamics, mechanics (AMBER94) and electrostatics was used to design ligands for the complexation of ammonium, potassium, sodium and lithium ions. A modular technique was used to synthesize an ammonium selective ionophore based on a cyclic depsipeptide structure (8). The ionophore was incorporated into a planar ion selective electrode (ISE) sensor format and the selectivity tested versus a range of metal cations. It was found that the membrane containing the polar plasticizer NPOE (nitrophenyloctylether) in the absence of ionic additive exhibited near-Nernstian behavior (slope = 60.1 mV/dec @ 37¢ªC) and possessed high selectivity for ammonium ion over lithium and the divalent cations, calcium and magnesium (logK = -7.3, -4.4, -7.1 for lithium, calcium and magnesium ions, respectively). The same membrane also exhibited sodium and potassium selectivity that was comparable to that reported for nonactin (logK = -2.1, -0.6 for sodium and potassium, respectively, compared to -2.4, -0.9 in the case of nonactin).

    N-(9-methylanthracene)-25,27-bis(1-propyloxy)calix[4]arene-azacrown-5 (10) was synthesized and tested as a fluoroionophore for the selective detection of potassium ions. Compound 10 acts as an ¡°off-on¡± fluorescent indicator for ion complexation as a result of photoinduced intramolecular electron transfer (PET). Studies demonstrate that 10 is selective for potassium over other alkali metal cations, with excellent selectivity over sodium and lithium (log K ¡Â -3.5) and moderate selectivity over rubidium and cesium (log K ~ -1).

    N-(9-methylanthracene)-25,27-bis(1-propyloxy)-4-tert-butylcalix[4]arene-azacrown-3 (11) was synthesized and tested as a fluoroionophore for the selective detection of lithium cations. When exposed to lithium ions in a 75:25 dichloromethane/THF solvent mixture, the molecule, which operates on PET, exhibited a >106-fold enhancement in fluorescence emission intensity. Selectivity studies demonstrated that 11 effectively discriminates against sodium and potassium ions log K ¡Â -3.8 and log K ¡Â -2.3.

    A fluorescent sodium optode based on a fluoroionophore consisting of aminorhodamine B covalently-linked through an amide bond to a calix[4]arene has also been developed (12). The optode, fashioned by incorporation of the fluoroionophore into a single component polymer matrix, operates on the basis of PET. The fluorescence intensity increased linearly with increasing sodium ion concentration in the range 0.01 M to 2.0 M, exhibiting a three-fold enhancement over this range. The optode provides selectivity for sodium ions compared to potassium ions that is sufficient for clinical determinations of sodium ion concentration.

  • benco.pdf

  • Browse by Author | Browse by Department | Search all available ETDs

    [WPI] [Library] [Home] [Top]

    Questions? Email etd-questions@wpi.edu
    Maintained by webmaster@wpi.edu