Mechanical & Materials Engineering

Undergraduate Courses

ME 1520. The Technology of Alpine Skiing

Cat II (offered at least every other Year).
This course explores science and engineering issues associated with equipment and technique for alpine skiing, particularly racing. A diverse group of technical subjects related to engineering mechanics are discussed: tribology, beams, rigid body motion, material science, machining and biomechanics. Specifically we will examine: ski-snow interactions, technique for gliding, turning and stepping, selection of line in racing; equipment design, testing and performance; and ski injuries. We will also address issues in the epidemiology of skiing injuries, the calculation of the cost of ski injuries to society, the impact of ski equipment technology on litigation and the impact of litigation on equipment and trail design. This course will be offered in academic years ending in odd numbers.

ME 1800. Manufacturing Science, Prototyping, and Computer-Controlled Machining

Cat I (offered at least 1x per Year).
This course introduces students to manufacturing science and engineering and prototype part production. It emphasizes CNC (computer-controlled) machining. Students will learn how to go from a solid (CAD, computer-aided design) model to a machined part, using CAM software (computer-aided manufacturing) and CNC machining. They will also be exposed to associated issues in manufacturing process analysis, engineering design, material science, and in dimensional and surface metrology. Using machining as an example, the science of manufacturing processes is developed in a combination of class work and laboratory experience. The laboratory experience includes an experimental component that relates process variables in machining with performance and machined part quality. Students whose project work will necessitate fabrication of parts and those who want a background in manufacturing process science and engineering should take this course.

ME 2300. Introduction to Engineering Design

Cat I (offered at least 1x per Year).
This project based course introduces students to the engineering design process including; identifying the need, benchmarking, writing design specifications, evaluating alternative designs and selecting a final design. Student groups will construct and evaluate a working prototype of their design. Additional topics include; creativity, product liability, reverse engineering, patents, and codes of ethics for engineers. Extensive written reports and oral presentations are required.
Recommended Background: Computer-aided design (ES 1310), mechanics (ES 2501, ES 2502), and manufacturing (ME 1800).

ME 2312. Introduction to Computational Solutions for Engineering Problems

Cat I (offered at least 1x per Year).
The purpose of this course is to introduce concepts of programming and numerical methods using Matlab within an engineering framework. The course will review basic linear algebra, statics, stress analysis, and engineering governing equations with solution pathways developed and presented as numerical programming problems. The fundamental programming techniques cover a variety of input and output formats typically encountered in engineering situations. Control and conditional loops, recognizing and controlling numerical error, numerical integration and differentiation will be introduced and developed within an engineering framework.
Recommended Background: Statics (ES 2501), Stress Analysis (ES 2502), General Physics-Mechanics (PH 1110), Differential and Integral Calculus (MA 1021, MA 1022) or equivalents.

ME 2820. Materials Processing

Cat I (offered at least 1x per Year).
An introduction to material processing in manufacturing. This course provides important background for anyone interested in manufacturing, design engineering design, sales, or management. Processing of polymers, ceramics, metals and composites is discussed. Processes covered include: rolling, injection molding, forging, powder metallurgy, joining and machining. The relationships between materials, processes, processing parameters and the properties of manufactured parts are developed. During the course the students should develop the ability to choose materials, processes, and processing parameters for designing manufacturing procedures to take a prototype part to production.
Recommended Background: ME 1800 Materials Selection and Manufacturing Processes, and ES 2001 Introduction to Materials Science.

ME 3310. Kinematics of Mechanisms

Cat I (offered at least 1x per Year).
An introduction to the synthesis and analysis of linkages, cams and gear trains is presented. The design process is introduced and used to solve unstructured design problems in linkage and cam design. Algebraic and graphical techniques to analyze the displacement, velocity and acceleration of linkages and cams are developed. Computer programs for the design and analysis of linkages are used by students. Results of student design projects are presented in professional engineering reports.
Recommended Background: Ordinary Differential Equations (MA 2051), statics (ES 2501), dynamics (ES 2503).

ME 3311. Dynamics of Mechanisms and Machines

Cat II (offered at least every other Year).
This course provides an in-depth study of forces in dynamic systems. Dynamic force analysis is developed using matrix methods. Computer programs are used to solve the sets of simultaneous equations derived by students for realistic, unstructured design problems. Inertial and shaking forces, elementary mechanical vibrations, torque-time functions, rotational and reciprocating balance and cam dynamics are covered using the internal combustion engine as a design example. Students execute unstructured design projects and prepare professional engineering reports on the results. Computers are used extensively to solve the dynamic equations. This course will be offered in academic years ending in odd numbers.
Recommended Background: Ordinary Differential Equations (MA 2051), statics (ES 2501), dynamics (ES 2503), kinematics (ME 3310), linear algebra.

ME 3320. Design of Machine Elements

Cat I (offered at least 1x per Year).
This is an introductory course in mechanical design analysis, and it examines stress and fatigue in many machine elements. Common machine elements are studied and methods of selection and design are related to the associated hardware. Topics covered include: combined stresses, fatigue analysis, design of shafts, springs, gears, bearings and miscellaneous machine elements.
Recommended Background: Mechanics (ES 2501, ES 2502, ES 2503), materials (ME 1800, ME 2820), computer programming (CS 1101 or CS 1102).

ME 3411. Intermediate Fluid Mechanics

Cat I (offered at least 1x per Year).
This course provides a mixture of theory and applications and covers topics not found in the introductory course in fluid mechanics. Topics include kinematics of fluid flow, potential flow, Navier-Stokes and the theory of viscous flow, basic turbulence, boundary layer theory, and introduction to compressible flow.
Recommended Background: Introductory fluid mechanics (ES 3004, or equivalent).

ME 3501. Elementary Continuum Mechanics

Cat II (offered at least every other Year).
In typical mathematics courses, students learn principles and techniques by solving many short and specially prepared problems. They rarely gain experience in formulating and solving mathematical equations that apply to real life engineering problems. This course will give students this type of applied mathematical experience. The course emphasizes the application of basic laws of nature as they apply to differential elements which lead to differential equations that need to be solved; all of these ideas are used in higher level engineering science courses such as fluid mechanics, heat transfer, elasticity, etc. Emphasis will be placed on understanding the physical concepts in a problem, selecting appropriate differential elements, developing differential equations, and finding ways to solve these equations. Limitations on the mathematical solutions due to assumptions made will be considered. This course will be offered in academic years ending in odd numbers.
Recommended Background: Ordinary Differential Equations (MA 2051), statics (ES 2501), dynamics (ES 2503).

ME 3506. Rehabilitation Engineering

Cat I (offered at least 1x per Year).
This project based design course focuses on the design and use of devices to aid persons with disabilities. Human factors and ergonomics are integrated into all phases of the design process with particular emphasis on the user interface. Topics include: defining the problem, developing design specifications, development of preliminary designs, selection, realization and evaluation of a final design. Students will also learn how physical, and cognitive parameters, safety, economics, reliability and aesthetics need to be incorporated into the design process.
Recommended Background: Mechanics (ES 2501, ES 2502, ES 2503), design (ME 2300), materials (ME 1800) and electrical engineering (ECE 2010).

ME 3820. Computer-Aided Manufacturing

Cat I (offered at least 1x per Year).
This introductory course in modern control systems will give students an understanding of the basic techniques, and the range of equipment used in most computer controlled manufacturing operations. The class work is reinforced by hands-on laboratories in the Robotics/CAM lab. Modeling and analysis of machining processes, and applications of PLC (programmable logic control) are included. Class topics include: Manufacturing Automation, Microcomputers for Process Monitoring and Control, Computer Numerical Control, Switching Theory and Ladder Logic, Transducers and Signal Conditioning, and Closed Loop Digital Control. The laboratories allow students to program and implement several types of the controllers, and will provide an introduction to the topic of industrial robotics.
Recommended Background: Manufacturing (ME 1800), materials processing (ME 2820), elementary computer/logic device programming.

ME 3901. Engineering Experimentation

Cat I (offered at least 1x per Year).
A course designed to develop analytical and experimental skills in modern engineering measurement methods, based on electronic instrumentation and computer-based data acquisition systems. The lectures are concerned with the engineering analysis and design as well as the principles of instrumentation, whereas the laboratory periods afford the student an opportunity to use modern devices in actual experiments. Lecture topics include: review of engineering fundamentals and, among others, discussions of standards, measurement and sensing devices, experiment planning, data acquisition, analysis of experimental data, and report writing. Laboratory experiments address both mechanical and thermal systems and instrumentation in either traditional mechanical engineering (heat transfer, flow measurement/visualization, force/torque/strain measurement, motion/vibration measurement) or materials engineering (temperature and pressure measurements in materials processing, measurement of strain and position in mechanical testing of materials). Each year students will be notified which type of experiments will be used in each term offering. Students may also consult with their academic advisor or the Mechanical Engineering department office.
Recommended Background: Mathematics (MA 2051), thermo-fluids (ES 3001, ES 3003, ES 3004), mechanics (ES 2501, ES 2502, ES 2503), materials (ES 2001).

ME 3902. Project-Based Engineering Experimentation

Cat I (offered at least 1x per Year).
This course is designed to develop experimental skills in engineering measurement methods, based on electronic instrumentation and computer-based data acquisition systems, such as the Raspberry Pi (a primarily digital microprocessor) and an Arduino (a primarily analog microcontroller). The lectures are concerned with the engineering design requirements as well as the principles of instrumentation, whereas the laboratory modules afford the student an opportunity to use these devices in actual experiments. Lecture topics include: discussions of standards, measurement and sensing devices, experiment planning, data acquisition, analysis of experimental data, and report writing. Laboratory experiments address mechanical (force/torque/strain measurements, motion/vibration measurements), energy (heat transfer, temperature, flow measurements), materials measurements (materials processing, measurement of strain and position in mechanical testing of materials), and instrumentation. The course culminates with an open-ended project of the students choosing. This open-ended project will illuminate the skills gained by the student to utilize multiple sensors and equipment to monitor and/or control physical situations.
Recommended Background: Introductory heat transfer (ES 3003 or equivalent), introductory stress and dynamic mechanics (ES 2502 & ES 2503 or equivalents), introductory electrical and computer engineering (ECE 2010 or equivalent) and introductory materials (such as ES 2001 or equivalent).

ME 4320. Advanced Engineering Design

Cat I (offered at least 1x per Year).
This course integrates students background in ME in a one-term design project that is usually taken from a local company. Students must organize themselves and the project to successfully realize a product that meets customer needs. Activities include problem definition, design analysis, mathematical modelling, CAD modelling, manufacturing, testing, liaison to vendors, customer relations, marketing, technical management, purchasing, report writing, and oral presentations.
Recommended Background: Mechanisms (ME 3310, ME 3311), stress analysis (ES 2502), design (ME 3320), thermo-fluids (ES 3001, ES 3003, ES 3004), materials (ES 2001), manufacturing (ME 1800).

ME 4323. Fundamentals of Drivetrain Systems

Cat I (offered at least 1x per Year).
This product-oriented course focuses on engineering fundamentals of ground vehicle drivetrain systems with application to automobiles, commercial and off-road vehicles as well as autonomous and electrically driven ground vehicles. The course focuses on theory and practice aspects of engineering design of vehicle transmissions, transfer cases, open and limited slip differentials, etc. A term project integrates design principles with materials selection to improve a drivetrain component for a given vehicle. Project steps include: problem definition and analysis, development of design specifications, development and analysis of alternative designs, conceptual design and material analysis, and a CAE design.
Recommended Background: Materials science (ES 2001), stress analysis (ES 2502), dynamics (ES 2503) or equivalents.

ME 4324. Integrated Design of Mechanical Systems

Cat I (offered at least 1x per Year).
This course develops student capabilities to conduct the detailed design of mechanical components integrated into a complete mechanical system. Topics covered include kinematic syntheses and analysis and detailed design of mechanical components under dynamic loading using the fatigue-life method. These topics are developed through a guided design project. Computer software packages such as Mathcad and Linkages are used.
Recommended Background: ES 2001 (Introduction to Materials Science), ES 1310 (Introduction to Computer Aided Design), ES 2501 (Introduction to Static Systems), ES 2502 (Stress Analysis), and ES 2503 (Introduction to Dynamic Systems).

ME 4422. Design and Optimization of Thermal Systems

Cat I (offered at least 1x per Year).
This course introduces students to design of small and large scale optimal thermal systems. The hardware associated with thermal systems includes fans, pumps, compressors, engines, expanders, turbines, heat and mass exchangers, and reactors, all interconnected with some form of conduits. Generally, the working substances are fluids. These types of systems appear in such industries as power generation, electric and gas utilities, refrigeration and cryogenics, air conditioning and heating, food, chemical, petroleum, and other process industries. This course is intended for mechanical engineering students, especially those seeking a concentration in Thermal-Fluids. Additionally, this course might be of interest to students in Aerospace Engineering and Chemical Engineering.
Recommended Background: Knowledge in thermodynamics (ES 3001), fluid mechanics (ES 3004), heat transfer (ES 3003), and introduction to design (ME 2300)

ME 4424. Radiation Heat Transfer Application and Design

Cat II (offered at least every other Year).
Radiation Heat Transfer Applications will develop the students knowledge of radiation and multi-mode heat transfer. Fundamentals of radiation will be covered: radiative properties of surfaces; view factors; exchange between black and grey surfaces; emission and absorption of gases; and flame radiation. Use of numerical methods will be emphasized as appropriate for solution of applications: the select numerical methods (numerical integration, matrix methods, ODE solutions) can be learned during the course. The course will conclude with a design exercise to be completed by each student. Each exercise will highlight radiation in a realistic scenario that requires multi-mode heat transfer and fluid mechanics analysis to develop the design solution. Exercise topics will come from subjects such as: solar power plants, solar effects on buildings, furnaces, fire safety in the built environment, etc. Students may not receive credit for both ME 4424 and ME 442X. This course will be offered in academic years ending in odd numbers.
Recommended Background: Differential and integral calculus, and ordinary differential equations (MA 2031 or equivalent), and thermodynamics, fluid mechanics and heat transfer (ES 3001, ES 3004, ES 3003 or equivalents).

ME 4429. Thermofluid Application and Design

Cat I (offered at least 1x per Year).
This course integrates thermodynamics, fluid mechanics and heat transfer through the use of design projects involving modern technologies, such as electronic cooling, vapor compression power and refrigeration cycles. Activities include problem definition, design creation and analysis, mathematical modeling, cost analysis and optimization.
Recommended Background: Knowledge in thermodynamics, fluid mechanics, heat transfer and introduction to design (ES 3001, ES 3004 and ES 3003, ME 2300 or equivalent).

ME 4430. Integrated Thermomechanical Design and Analysis

Cat II (offered at least every other Year).
Current state-of-the-art computer based methodologies used in the design and analysis of thermomechanical systems will be presented and illustrated by selected laboratory demonstrations, and used in projects. Projects will include thermal, mechanical, electronic, and photonic loads of steady state and dynamic nature and will integrate design, analysis, and testing. Students will prepare a technical report and present their results. Topics will include, but not be limited to, thermomechanics of fiber optic telecommunication cables, high-energy beam interactions with materials, shape memory alloys, microelectronics, MEMS and mechatronics. This course will be offered in academic years ending in odd numbers.
Recommended Background: MA 2051, ES 2001, ES 2502, ES 3003, ME 3901, and an introduction to design.

ME 4506. Mechanical Vibrations

Cat I (offered at least 1x per Year).
This course is an introduction to the fundamental concepts of mechanical vibrations, which are important for design and analysis of mechanical and structural systems subjected to time-varying loads. The objective of the course is to expose the students to mathematical modeling and analysis of such systems Topics covered include: formulation of the equations of motion using Newtons Laws, DAlemberts Principle and energy methods; prediction of natural frequency for single-degree-of-freedom systems; modeling stiffness characteristics, damping and other vibrational properties of mechanical systems; basic solution techniques by frequency response analysis and convolution integral methods. Examples may include analysis and design for transient passage through resonance; analysis and design of vibration measurement devices; introductory rotordynamics. The course is mainly focused on analysis of single-degree-of-freedom systems, however a basic introduction into multidegree-of-freedom systems is also presented. Computer-based project may be suggested.
Recommended Background: Ordinary Differential Equations (MA 2501), Statics (ES 2501), Dynamics (ES 2503).

ME 4512. Introduction to the Finite Element Method

Cat I (offered at least 1x per Year).
This course serves as an introduction to finite element analysis (FEA) for stress analysis problems. Finite element equations are developed for several element types from stiffness and energy approaches and used to solve simple problems. Element types considered include spring, truss, beam, two-dimensional (plane stress/strain and axisymmetric solid), three-dimensional and plates. Stress concentrations, static failures, and fatigue failures are considered for each element type. Emphasis will be placed on knowing the behavior and usage of each element type, being able to select a suitable finite element model for a given problem, and being able to interpret and evaluate the solution quality. A commercial, general-purpose finite element computer program is used to solve problems that are more complex. Projects are used to introduce the use of FEA in the iterative design process.
Recommended Background: Mathematics (MA 2051, MA 2071), Mechanics (ES 2501 & ES 2502 or CE 2000 & CE 2001).

ME 4813. Ceramics and Glasses for Engineering Applications

Cat I (offered at least 1x per Year).
This course develops an understanding of the processing, structure, property, performance relationships in crystalline and vitreous ceramics. The topics covered include crystal structure, glassy structure, phase diagrams, microstructures, mechanical properties, optical properties, thermal properties, and materials selection for ceramic materials. In addition the methods for processing ceramics for a variety of products will be included.
Recommended Background: ES 2001 or equivalent.

ME 4821. Plastics

Cat II (offered at least every other Year).
This course develops the processing, structure, property, performance relationships in plastic materials. The topics covered include polymerization processes, chain structure and configuration, molecular weights and distributions, amorphous and crystalline states and glass-rubber transition. The principles of various processing techniques including injection molding, extrusion, blow molding, thermoforming and calendaring will be discussed. The physical and mechanical properties of polymers and polymer melts will be described with specific attention to rheology and viscoelasticity. Pertinent issues related to environmental degradation and recyclability will be highlighted. This course will be offered in academic years ending in even numbers.
Recommended Background: ES 2001 or equivalent.

ME 4832. Corrosion and Corrosion Control

Cat I (offered at least 1x per Year).
An introductory course designed to acquaint the student with the different forms of corrosion and the fundamentals of oxidation and electro-chemical corrosion. Topics covered include: corrosion principles, environmental effects, metallurgical aspects, galvanic corrosion, crevice corrosion, pitting, intergranular corrosion, erosion corrosion, stress corrosion, cracking and hydrogen embrittlement, corrosion testing, corrosion prevention, oxidation and other high-temper-ature metal-gas reactions.
Recommended Background: Materials (ES 2001).

ME 4840. Physical Metallurgy

Cat I (offered at least 1x per Year).
Fundamental relationships between the structure and properties of engineering materials are studied. Principles of diffusion and phase transformation are applied to the strengthening of commercial alloy systems. Role of crystal lattice defects on material properties and fracture are presented. Strongly recommended as a senior-graduate level course for students interested in pursuing a graduate program in materials or materials engineering at WPI, or other schools.
Recommended Background: Materials (ES 2001, ME 2820).

ME 4875. Introduction to Nanomaterials and Nanotechnology

Cat I (offered at least 1x per Year).
This course introduces students to current developments in nanoscale science and technology. The current advance of materials and devices constituting of building blocks of metals, semiconductors, ceramics or polymers that are nanometer size (1-100 nm) are reviewed. The profound implications for technology and science of this research field are discussed. The differences of the properties of matter on the nanometer scale from those on the macroscopic scale due to the size confinement, predominance of interfacial phenomena and quantum mechanics are studied. The main issues and techniques relevant to science and technologies on the nanometer scale are considered. New developments in this field and future perspectives are presented. Topics covered include: fabrication of nanoscale structures, characterization at nanoscale, molecular electronics, nanoscale mechanics, new architecture, nano-optics and societal impacts.
Recommended Background: ES 2001 Introduction to Materials or equivalent Some sections of this course may be offered as Writing Intensive (WI).

ME 5105. Renewable Energy

.

MTE 575. Introduction to Nanomaterials and Nanotechnology

Cat I (offered at least 1x per Year).
This course introduces students to current developments in nanoscale science and technology. The current advance of materials and devices constituting of building blocks of metals, semiconductors, ceramics or polymers that are nanometer size (1-100 nm) are reviewed. The profound implications for technology and science of this research field are discussed. The differences of the properties of matter on the nanometer scale from those on the macroscopic scale due to the size confinement, predominance of interfacial phenomena and quantum mechanics are studied. The main issues and techniques relevant to science and technologies on the nanometer scale are considered. New developments in this field and future perspectives are presented. Topics covered include: fabrication of nanoscale structures, characterization at nanoscale, molecular electronics, nanoscale mechanics, new architecture, nano-optics and societal impacts.
Recommended Background: ES 2001 Introduction to Materials or equivalent Some sections of this course may be offered as Writing Intensive (WI).

Graduate Courses

ME 500. Applied Analytical Methods in Engineering

.
The emphasis of this course is on the modeling of physical phenomena encountered in typical engineering problems, and on interpreting solutions in terms of the governing physics. In this manner, the course will expose students to a range of techniques that are useful to practicing engineers and researchers. Physical examples will be drawn from fluid mechanics, dynamics, stability problems, and structural mechanics. The course will introduce analytical techniques as they are required to study such phenomena. Depending on the examples chosen, the techniques covered may include partial differential equations, power series, Fourier series, Fourier integrals, including cases of sustained nonperiodic processes which require incorporating probabilistic approach into dynamics, Greens Functions, Sturm-Liouville theory and linear algebra. Students cannot receive credit for this course if they have taken ME 500.

ME 5000. Applied Analytical Methods in Engineering

.
The emphasis of this course is on the modeling of physical phenomena encountered in typical engineering problems, and on interpreting solutions in terms of the governing physics. In this manner, the course will expose students to a range of techniques that are useful to practicing engineers and researchers. Physical examples will be drawn from fluid mechanics, dynamics, and structural mechanics. The course will introduce analytical techniques as they are required to study such phenomena. Depending on the examples chosen, the techniques covered may include partial differential equations, power series, Fourier series, Fourier integrals, Laplace transform methods, Green's Functions, Sturm-Liouville theory, linear algebra, and calculus of variations. (Prerequisites: differential equations at the undergraduate level.) Students cannot receive credit for this course if they have taken either the Special Topics (ME 593A) version of the same course or ME 500.

ME 5001. Applied Numerical Methods in Engineering

.
A study of important numerical and computational methods for solving engineering science problems. The course will include methods for solving linear and nonlinear equations, interpolation strategies, evaluating integrals, and solving ordinary and partial differential equations. Finite difference methods will be developed in full for the solution of partial differential equations. The course materials emphasize the systematic generation of numerical methods for elliptic, parabolic, and hyperbolic problems, and the analysis of their stability, accuracy, and convergence properties. The student will be required to write and run computer programs. Students cannot receive credit for this course if they have taken the Special Topics (ME 593M) version of the same course or ME 313.

ME 5104. Turbomachinery

.
This course is an introduction to the fluid mechanics and thermodynamics of turbomachinery for propulsion and power generation applications. Axial and centrifugal compressors will be discussed as well as axial and radial flow turbines. Analysis of the mean line flow in compressor and turbine blade rows and stages will be discussed. The blade-to-blade flow model will be presented and axisymmetric flow theory introduced. Three-dimensional flow, i.e. secondary flows, will also be discussed. Students cannot receive credit for this course if they have taken the Special Topics (ME 593H) version of the same course.

ME 5105. Renewable Energy

.
The course provides an introduction to renewable energy, outlining the challenges in meeting the energy needs of humanity and exploring possible solutions in some detail. Specific topics include: use of energy and the correlation of energy use with the prosperity of nations; historical energy usage and future energy needs; engineering economics; electricity generation from the wind; wave/ocean energy, geo-thermal and solar-thermal energy; overview of fuel cells, biofuels, nuclear energy, and solar-photovoltaic systems and their role and prospects; distribution of energy and the energy infrastructure; energy for transportation; energy storage.

ME 5108. Introduction to Computational Fluid Dynamics

.
The course provides the theory and practice of computational fluid dynamics at an entry graduate level. Topics covered include: classification of partial differential equations (PDEs) in fluid dynamics and characteristics; finite difference schemes on structured grids; temporal discretization schemes; consistency, stability and error analysis of finite difference schemes; explicit and implicit finite differencing schemes for 2D and 3D linear hyperbolic, parabolic, elliptic, and non-linear PDEs in fluid dynamics; direct and iterative solution methods for algebraic systems. The course requires completion of several projects using MATLAB.

ME 513. Thermodynamics

.
Review of the zeroth, first and second laws of thermodynamics and systems control volume. Applications of the laws to heat engines and their implications regarding the properties of materials. Equations of state and introduction to chemical thermodynamics.

ME 514. Fluid Dynamics

.
This course is an introduction to graduate-level fluid dynamics. Specific learning outcomes include deriving and understanding the governing equations of fluid mechanics; applying basic equations of fluid motion to understand inviscid fluids, Newtonian fluids, and incompressible fluids; analyzing potential flows using stream functions and potential functions; deriving exact solutions of fluid equations for special flow cases; and introducing the concept of boundary layers and deriving similarity solutions for boundary layer equations. Students cannot receive credit for this course if they have received credit for AE/ME 5101 or AE/ME 5107.

ME 516. Heat Transfer

.
Review of governing differential equations and boundary conditions for heat transfer analysis. Multidimensional and unsteady conduction, including effects of variable material properties. Analytical and numerical solution methods. Forced and free convection with laminar and turbulent flow in internal and external flows. Characteristics of radiant energy spectra and radiative properties of surfaces. Radiative heat transfer in absorbing and emitting media. Systems with combined conduction, convection and radiation. Condensation, evaporation, and boiling phenomena.

ME 5200. Mechanical Vibrations

.
The course provides fundamentals for vibration analysis of linear discrete and continuous dynamic systems, A vibrating system is first modeled mathematically as an initial value problem (IVP) or a boundary-initial value problem (BIVP) by the Newton-DAlembert method and/or the Lagrange energy approach and then solved for various types of system. Explicit solutions for dynamic response of a linear single-degree-of-freedom (SDOF) system, both damped and undamped, is derived for free-vibration caused by the initial conditions and forced vibration caused by different excitations. Modal analysis is presented to solve for vibration response of both multi-degree-of-freedom (MDOF) systems and continuous systems with distributed parameters. As the basis of modal analysis, the natural frequencies and vibration modes of a linear dynamic system are obtained in advance by solving an associated generalized eigenvalue problem and the orthogonal properties of the vibration modes with respect to the stiffness and mass matrices are strictly proved. Computational methods for vibration analysis are introduced. Applications include but are not limited to cushion design of falling packages, vehicles traveling on a rough surface, multi-story building subjected to seismic and wind loading, and vibration analysis of bridges subjected to traffic loading. Students cannot receive credit for this course if they have taken the Special Topics (ME 593V) version of the same course or ME522.

ME 5202. Advanced Dynamics

.
Basic concepts and general principles of classical kinematics and dynamics of particles, systems of particles and rigid bodies are presented with application to engineering problems with complicated three-dimensional kinematics and dynamics. Derivation of the governing equations of motion using Principle of Virtual Work and Lagrange equations is described together with the direct Newton approach. Applications include: swings-effect and its use in engineering, illustrating in particular limit cycles and their stability and reversed-swings control of vibrations of pendulum; various examples of gyroscopic effects; and especially introductory rotor dynamics including transverse vibrations (whirling) and potential instability of rotating shafts. Students cannot receive credit for this course if they have taken the Special Topics (ME 593D) version of the same course or ME 527.

ME 5220. Control of Linear Dynamical Systems

.
This course covers analysis and synthesis of control laws for linear dynamical systems. Fundamental concepts including canonical representations, the state transition matrix, and the properties of controllability and observability will be discussed. The existence and synthesis of stabilizing feedback control laws using pole placement and linear quadratic optimal control will be discussed. The design of Luenberger observers and Kalman filters will be introduced. Examples pertaining to aerospace engineering, such as stability analysis and augmentation of longitudinal and lateral aircraft dynamics, will be considered. Assignments and term project (if any) will focus on the design, analysis, and implementation of linear control for current engineering problems. The use of Matlab/Simulink for analysis and design will be emphasized.
Recommended Background: Familiarity with ordinary differential equations, introductory control theory, fundamentals of linear algebra, and the analysis of signals and systems is recommended. Familiarity with Matlab is strongly recommended.

ME 5221. Control of Nonlinear Dynamical Systems

.
Overview of stability concepts and examination of various methods for assessing stability such as linearization and Lyapunov methods. Introduction to various design methods based on linearization, sliding modes, adaptive control, and feedback linearization. Demonstration and performance analysis on engineering systems such as flexible robotic manipulators, mobile robots, spacecraft attitude control and aircraft control systems. Control synthesis and analysis is performed using Matlab/Simulink.

ME 5225. Fiber Optical Sensors

.
This course is designed to introduce students to the field of fiber optics, with an emphasis on design and working principles of fiber optical sensors for mechanical, biological, and chemical measurements. Students will be able to learn the basic knowledge and working principles of optical fibers and fiber optical components, as well as practical design guidelines and applications of fiber optical sensing systems. The first half of the course will introduce the fundamentals of fiber optics, including working principles of optical fibers, single-mode and multimode fibers, properties of optical fibers, passive fiber optical devices, light sources, and optical detectors. The second half will focus on practical fiber optical sensors and sensing systems, including working principles of fiber optical sensors, intensity-based and interferometer-based fiber optical sensors, fiber Bragg gratings, and low-coherence fiber optical interferometers. Specifically, design and implementation of fiber optical sensors and sensing systems for strain and pressure measurements will be discussed in detail. Measurement characteristics and signal processing of fiber optical sensing systems for different applications will be introduced.
Recommended Background: Undergraduate level stress analysis and wave fundamentals, such as ES 2502, PH 1140. Knowledge of vibrations such as ME 4506 is preferred but not required.

ME 5304. Laser Metrology and Nondestructive Testing

.
Demands for increased performance and efficiency of components in the nano/micro-, meso-, and macro-scales, impose challenges to their engineering design, study, and optimization. These challenges are compounded by multidisciplinary applications to be developed inexpensively in short time while satisfying stringent design objectives. As a consequence, effective quantitative engineering methodologies, such as optical techniques, are frequently used in the study and optimization of advanced components and systems. In this course, modern laser metrology techniques are discussed and their practical applications to solve problems, with emphasis on nondestructive testing (NDT), are illustrated with laboratory demonstrations. Topics covered include wave and Fourier optics, classic and holographic interferometry, speckle techniques, solid-state lasers, fiber optics, CCD cameras, computer vision, camera calibration methods, and image processing and data reduction algorithms as required in quantitative fringe analysis. Detail examples of nondestructive testing and coherent optical metrology in solid mechanics, vibrations, heat transfer, electromagnetics, and reverse engineering are given. Students are required to work on projects depending on their background and interests. Students cannot receive credit for this course if they have taken the Special Topics (ME 593J) version of the same course or ME 534.
Recommended Background: Mechanics, materials, physics, knowledge of a high-level computer programming language.

ME 5313. Introduction to Nanomechanics

.
This course introduces students to nanomechanics. Topics covered include an introduction to mechanical systems, forces at the nano to atomic scales, cantilever theory, mechanics of 0D, ID and 2D nanomaterials, polymer chain nanomechanics, molecular recognition, wear friction and adhesion at the nanoscale, scale dependence of frictional resistance, nano-indentation, surface elasticity and viscoelasticity mapping, lubrication principles at the nanoscale, interfacial forces in confined fluids, mechanics of electrorheological and magnetic fluids.
Recommended Background: ME 4875 or consent of Instructor.

ME 5314. Microsystems Technology

.
This course will build on the fundamentals of semiconductor manufacturing and its applications in micromechanical systems. Microsystems technology explores the science of miniaturization (the science of making small things). The course will discuss top-down and bottom-up manufacturing techniques, lithography, pattern transfer using additive and subtractive techniques, wet bulk micromachining, surface micromachining, LIGA and micromolding, scaling laws, and applications of miniaturized devices. Some examples of micro-devices such as accelerometers, pressure sensors, chemical sensors and biomedical sensors will be discussed.

ME 5380. Foundations of Elasticity

.
This course is suitable as an introductory graduate level course. Topics will be chosen from the following: three-dimensional states of stress; measures of strain; thick-walled cylinders, disks and spheres; plane stress and plane strain; thermoelasticity; Airy stress function; energy methods, and exact theory for torsion of noncircular cross sections. This course may be taken independent of ME 5302.

ME 5381. Applied Elasticity

.
This course is suitable as an introductory graduate level course. Topics covered will be chosen from the following: bending and shear stresses in unsymmetric beams; bending of composite beams; bending of curved beams; torsion of thin-walled noncircular cross sections; beams on elastic foundations; stress concentrations; failure criteria; stability of columns; and bending of plates. This course may be taken independent of ME 5301.

ME 5401. Computer-Aided Design and Geometric Modeling

.
This course covers topics in computer-aided geometric design and applications in mechanical engineering. The objectives of the course are to familiarize the students with complex geometric modeling and analytical techniques used in contemporary computer-aided design systems. Topics to be covered may include complex curve and surface generation, solid modeling, assembly and mechanism modeling, transformations, analytic geometry, offsets and intersections of complex shapes, graphics standards and data transfer, rendering techniques, parametric design and geometric optimization, numerical methods for geometric analysis and graphics design programming.

ME 591. Graduate Seminar

.
Seminars on current issues related to various areas of mechanical engineering are presented by authorities in their fields. All full-time mechanical engineering students are required to register and attend.

ME 593. Special Topics

.
Arranged by individual faculty with special expertise, these courses survey fundamentals in areas that are not covered by the regular mechanical engineering course offerings. Exact course descriptions are disseminated by the Mechanical Engineering Department well in advance of the offering.

ME 598. Directed Research

.
For M.S. students wishing to gain research experience peripheral to their thesis topic, or for Ph.D. students wishing to gain research experience peripheral to their dissertation topic..

ME 599. Thesis Research

.
For masters students wishing to obtain research credit toward their thesis.

ME 6108. Intermediate Computational Fluid Dynamics

.
The course presents computational methods for incompressible and compressible viscous flows at an intermediate level. Topics are chosen from: grid generation techniques; finite volume schemes; stability analysis; artificial viscosity; explicit and implicit schemes; flux-vector splitting; monotonic advection schemes; multigrid methods; particle-based simulation methods. Students who have received credit for AE/ME 3103 will not receive credit for AE/ME 6108.

ME 6201. Advanced Topics in Vibration

.
The course presents advanced topics in vibrations of machines and structures: dynamic stability analysis for linear nonconservative systems with applications to aeroelasticity and rotordynamics such as whirling of shafts with internal energy dissipation; introduction into theory of nonlinear and parametric vibrations in machines and structures; probabilistic approach in dynamics - analysis of random vibrations with applications to reliability evaluation in earthquake engineering, offshore engineering, etc. Use of random vibration analyses is illustrated for online condition monitoring for machines and structures (mechanical signature analysis), such as detecting instability and evaluating stability margin for a nonconservative system from its online measured signal. Introduction into general vibration theory makes the course self-contained (background in ME 522 preferable but not necessary). Students cannot receive credit for this course if they have taken the Special Topics (ME 593B) version of the same course.

ME 621. Dynamics and Signal Analysis

.
A laboratory-based course which applies Fourier and cepstral signal analysis techniques to mechanical engineering problems. The theory and application of the Fourier series, Fast Fourier Transform (FFT) and the cepstrum to the analysis of mechanical and acoustical systems is presented. Digital sampling theory, windowing, aliasing, filtering, noise averaging and deconvolution are discussed. Limitations of and errors in implementation of these techniques are demonstrated. Students will perform weekly experiments in the Structural Dynamics and Vibration Laboratory, which reinforce the theories presented in lectures. Application will include structures, acoustics, rotating machinery and cams.

ME 634. Holographic Numerical Analysis

.
Recent advances in holographic analysis of body deformations are discussed. Included in the course are topics covering sandwich holography, optoelectronic fringe interpolation technique, theory of fringe localization, use of projection matrices and the fringe tensor theory of holographic strain analysis. The application of interactive computer programs for holographic analysis of engineering and biological systems will be outlined. Lectures are supplemented by laboratory demonstrations and experiments.

ME 693. Advanced Special Topics

.
Arranged by individual faculty with special expertise, these courses cover advanced topics that are not covered by the regular mechanical engineering course offerings. Exact course descriptions are disseminated by the Mechanical Engineering Department well in advance of the offering.

ME 698. Pre-Dissertation Research

.
Intended for doctoral students wishing to obtain dissertation-research credit prior to admission to candidacy.

ME 699. Dissertation Research

.
Intended for doctoral students admitted to candidacy wishing to obtain research credit toward their dissertations.

MTE 509. Electron Microscopy

.
This course introduces students to the theory, fundamental operating principles, and specimen preparation techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDS). The primary emphasis is placed on practical SEM, TEM, and x-ray microanalysis of materials. Topics to be covered include basic principles of the electron microscopy; SEM instrumentation, image formation and interpretation, qualitative and quantitative x-ray microanalysis in SEM; electron diffraction and diffraction contrast imaging in TEM. Various application examples of SEM and TEM in materials research will be discussed. Lab work will be included. The course is available to graduate students.
Recommended Background: CH 1020, PH 1120, and ES 2001 or equivalent. Note: Students cannot receive credit for this course if they have taken the Special Topics version of the same course.

MTE 526. Advanced Thermodynamics

.
Thermodynamics of solutionsphase equilibria Ellingham diagrams, binary and ternary phase diagrams, reactions between gasses and condensed phases, reactions within condensed phases, thermodynamics of surfaces, defects and electrochemistry. Applications to materials processing and degradation will be presented and discussed. Note: Students cannot receive credit for this course if they have taken the Special Topics version of the same course (MTE 594T).

MTE 530. Computational Thermodynamics

.
The objective of this course is to introduce the basic principles of computational thermodynamics (CALPHAD). Students will be exposed to the basic thermodynamic simulation in single-component, binary, ternary, and higher-order systems for various alloys and ceramics systems. The course will emphasize the linkage of computational thermodynamics with the real industry challenges faced in the next-generation materials design. In addition, the fundamental concepts of multiscale modeling, including the atomic scale, mesoscale and macroscale modeling, will also be introduced to students. Recommended Background: A graduate major in engineering or science is recommended, but not required. It is preferred that students have taken MTE526/ME5326 Advanced Thermodynamics or equivalent courses.

MTE 532. X-Ray Diffraction and Crystallography

.
This course discusses the fundamentals of crystallography and X-ray diffraction (XRD) of metals, ceramics and polymers. It introduces graduate students to the main issues and techniques of diffraction analysis as they relate to materials. The techniques for the experimental phase identification and determination of phase fraction via XRD will be reviewed. Topics covered include: basic X-ray physics, basic crystallography, fundamentals of XRD, XRD instrumentation and analysis techniques. Note: Students cannot receive credit for this course if they have taken the Special Topics version of the same course (MTE 594C).

MTE 540. Analytical Methods in Materials Engineering

.
Heat transfer and diffusion kinetics are applied to the solution of materials engineering problems. Mathematical and numerical methods for the solutions to Fouriers and Picks laws for a variety of boundary conditions will be presented and discussed. The primary emphasis is given heat treatment and surface modification processes. Topics to be covered include solutionizing, quenching, and carburization heat treatment.

MTE 550. Phase Transformations in Materials

.
This course is intended to provide a fundamental understanding of thermodynamic and kinetic principles associated with phase transformations. The mechanisms of phase transformations will be discussed in terms of driving forces to establish a theoretical background for various physical phenomena. The principles of nucleation and growth and spinodal transformations will be described. The theoretical analysis of diffusion controlled and interface controlled growth will be presented The basic concepts of martensitic transformations will be highlighted. Specific examples will include solidification, crystallization, precipitation, sintering, phase separation and transformation toughening.

MTE 580. Materials Science and Engineering Seminar

.
Reports on the state-of-the-art in various areas of research and development in materials science and engineering will be presented by the faculty and outside experts. Reports on graduate student research in progress will also be required.

MTE 5816. Ceramics and Glasses for Engineering Applications

.
This course develops an understanding of the processing, structure, property, performance relationships in crystalline and vitreous ceramics. The topics covered include crystal structure, glassy structure, phase diagrams, microstructures, mechanical properties, optical properties, thermal properties, and materials selection for ceramic materials. In addition the methods for processing ceramics for a variety of products will be included. Note: Students cannot receive credit for this course if they have taken the Special Topics version of the same course.
Recommended Background: ES2001 or equivalent.

MTE 5844. Corrosion and Corrosion Control

.
An introductory course on corrosion; aqueous corrosion, stress corrosion cracking and hydrogen effects in metals will be presented. High-temperature oxidation, carburization and sulfidation will be discussed. Discussions focus on current corrosive engineering problems and research. Note: Students cannot receive credit for this course if they have taken the Special Topics version of the same course.

MTE 594. Special Topics

.
Theoretical or experimental studies in subjects of interest to graduate students in materials science and engineering.