WPI Plans for Fall Opening Latest Information
WPI Provost Wole Soboyejo

WPI Provost Wole Soboyejo

Media Contact

Andy Baron
Associate Director of Public Relations
Worcester Polytechnic Institute
Worcester, Massachusetts
978-235-3407 (cell)
ajbaron@wpi.edu

WPI-led Research Team Shrinks Breast Cancer Tumors in Mice with Targeted Therapy

Article in Scientific Reports Describes Drugs with No Toxic Side Effects

May 28, 2020
Share
Share

A team of researchers led by Worcester Polytechnic Institute (WPI) Provost Wole Soboyejo has identified targeted drugs that reduced the sizes of hard-to-treat breast cancer tumors in mice without inducing the toxic side effects that are typically associated with conventional chemotherapy.

The researchers said in an article published in Scientific Reports that a molecular recognition unit attached to drugs specifically targeted “triple-negative” breast cancer tumors, which typically do not respond to targeted therapies. The targeted drugs eliminated or reduced the sizes of breast cancer tumors in laboratory experiments that were performed on mice. No toxic side effects were observed in the experiments.

“When injected into the bloodstream, only a small fraction of traditional chemotherapeutic drugs reaches tumors,” Soboyejo said. “It usually takes relatively high concentrations of conventional cancer drugs to have therapeutic effects on tumors. Hence, such concentrations are often toxic to other cells. In our case, the targeting drugs were more effective at shrinking and eliminating triple-negative breast tumors in mice. They also eliminated tumors without inducing toxicity.”

Breast cancer is the most commonly diagnosed cancer in women. Chemotherapy kills fast-growing tumor cells by flooding a patient’s body with potent drugs, but the treatment often produces toxic side effects. Targeted therapy aims to reduce side effects by delivering chemotherapeutic drugs directly to breast cancer tumor cells. The drugs seek out and bind to specific cellular structures known as receptors.

Three common receptors that are over-expressed on the surfaces of breast cancer tumor cells are HER2, a growth factor, as well as estrogen and progesterone hormones. Most breast cancer treatments target HER2 receptors. However, between 10% and 17% of all breast cancers lack HER2, estrogen, and progesterone receptors. These “triple-negative” breast cancers are more prevalent in younger women, African American women, and African women.

Soboyejo, inspired by a relative’s battle with breast cancer, previously studied luteinizing hormone-releasing hormone (LHRH) as a targeting mechanism to deliver magnetic nanoparticles to breast tumors. The targeted magnetic nanoparticles were found to improve the imaging of breast tumors in nude mice, a type of laboratory mouse. LHRH is a naturally occurring hormone in mammals. It is essential for reproduction.

I think this method has major implications for targeted cancer treatment in general.
-Wole Soboyejo
Provost at WPI

More recently, Soboyejo began studying LHRH as a targeting mechanism for chemotherapeutic drugs. His work has been funded by WPI and the Pan African Materials Institute at the African University of Science and Technology (AUST) in Abuja, Nigeria, which is funded by the World Bank.

In this study, the researchers attached the chemotherapy drug paclitaxel to LHRH. They also attached prodigiosin, a natural substance with anti-cancer properties, to LHRH. Both combination molecules were tested against triple-negative breast cancer cells and tissues.

Soboyejo’s team hopes to continue work on LHRH-targeted nanoparticles and therapeutic drugs, and to position them for human clinical trials on breast cancer patients. The group is also working to identify other targeted drugs and nanoparticles for the detection and treatment of other tumors.

“The fact that we could target triple-negative breast cancer in mice models is important. However, I think this method has major implications for targeted cancer treatment in general,” Soboyejo said.

Co-authors on the article are, from WPI, John Obayemi, assistant research professor of mechanical engineering; Ali Salifu, assistant research professor of mechanical engineering; Vanessa Uzonwanne, doctoral student in materials science and engineering; and Jean King, dean of arts and sciences. Co-authors from the University of Massachusetts Medical School are Ogooluwa Ojelabi, postdoctoral researcher; Laurelle Payne, research technician; and Constance Moore, associate professor. Other co-authors are Stanley Eluu of Nnamdi Azikiwe University, Nigeria; and Sandra Jusu, Clare Nwazojie, and Maria Onyekanne, PhD students at AUST.

Keep Up With WPI Research News

Want to learn more about Research at WPI? Subscribe to the monthly newsletter.


About Worcester Polytechnic Institute

Worcester Polytechnic Institute, a purpose-driven community of educators and researchers, has been the global leader in project-based learning for 50 years. An impact maker for higher education and the world, WPI prepares confident, competent problem solvers with a project-based curriculum that immerses students in authentic, real-world experiences.

Media Contact

Andy Baron
Associate Director of Public Relations
Worcester Polytechnic Institute
Worcester, Massachusetts
978-235-3407 (cell)
ajbaron@wpi.edu