Skip to main content

In systems biology, we use mathematical tools to identify the basic principles that underlie complex biological systems.  We aim to develop quantitative and predictive descriptions of these systems in health and disease.

Walcott

Sam Walcott

I develop mathematical models of biological systems at the molecular scale to understand macroscopic biological function.  Past questions of interest include: How do a molecule's mechanical properties influence the behavior of a cell?  How do single molecule measurements relate to muscle function?  To answer such questions, I use a combination of computer simulations and mathematical analysis.  This theoretical work is complemented by experiments performed by my collaborators.

German Iannacchione

Germano Iannacchione

I am an experimentalist focusing on thermo-physical properties of soft-matter that includes biomaterials.  A recent set of projects involved the study of the drying of bio-colloidal drops (various protein solutions, mixtures including liquid crystals, whole blood, etc.) as a function of concentration monitoring the drying evolution and final structure/morphology of the dried film.  This research fits into the general area of emergence in non-equilibrium systems. Learn more about Germano Innacchione.

George Kaminski

George Kaminski

My research is focused on building bridges between mathematical models of biophysical systems and practically interesting applications of these models. The main goal is to find balance that makes the calculations both simple and practical, and, at the same time, sufficiently accurate and robust. We use computer molecular simulations in my group, and the main direction is currently in modeling proteins and protein-metal complexes. Learn more about George Kaminski.

Sarah Olson Cell

Sarah Olson

My group develops biophysical models that couple multiple scales with the goal of understanding the underlying biological processes and the emergent properties of these complex systems. Currently, our group uses sophisticated mathematical analysis and develops new computational methods to answer questions related to microorganism motility, cell division, tissue engineering, and cancer therapeutics. Learn more about Sarah Olson.

Suzanne Scarlata

Suzanne Scarlata

Our lab uses biophysical approaches to understand the communication network that becomes active when extracellular agents interact with cells.  Our recent work focuses on the series of concerted reactions invoked by neurotransmitters that allow neuronal connections to form and break during processes such as learning and memory.  We have recently delineated how neurotransmitters induce chemical signals to produce mechanical changes to alter cell connections.   Although these signaling networks are critical in neuronal cells, they are also important in muscle and other cell types. Scarlata Lab.

Kun-Ta Wu

Kun-Ta Wu

My group works on self-organization of active fluids which are composed of entities that consume fuel and propel themselves. This feature of active fluids allows for accomplishing tasks beyond the limits of conventional passive fluids such as transporting cargo without external pumps. While there are various types of active fluid such as bacterial suspension and self-propelling colloidal systems, my group focuses on kinesin-driven, microtubule-based active fluid, which hydrolyzes adenosine triphosphate to create chaotic flows at low Reynolds number systems. In this kinesin-microtubule system, my group asks miscellaneous fluid-related questions such as how active fluid can create active turbulence to enhance mixing efficiency in low Reynolds number systems where conventional high Reynolds number turbulence is suppressed and how we can regulate the chaotic flow of active fluid to a river-like coherent flow that has potential to create an active fluid-powered machine. Learn more about Kun-Ta Wu.

Min Wu

Min Wu: My research centers on developing mathematical models and numerical methods to understand growth and morphogenesis in living systems. I currently work with plant-cell biologists to understand the control(s) of walled-cell development and morphological variations and bioengineers to understand and guide large-scale soft tissue migrations. Learn more about Min Wu.

José Arguello

Andrea Arnold

Jose' M. Arguello

Jose Arguello

Professor

Micronutrient transition metals (copper, zinc, cobalt, nickel, iron, and manganese) play a central role in the interaction of pathogenic (and beneficial) bacteria with higher eukaryote hosts. Our research is directed to understand the bacterial mechanisms of metal homeostasis required for these interactions. In particular, we focus on the functions of transmembrane transporters and chaperone molecules that tightly control metal uptake and distribution.

Andrea N. Arnold

Andrea N. Arnold

Assistant Professor

My research in applied mathematics is in the field of inverse problems and uncertainty quantification, which involves estimating unknown system parameters using indirect observations and analyzing the changes in predicted outcomes due to changes in the inputs. In particular, I am interested in the design and analysis of efficient and robust nonlinear filtering algorithms for state and parameter estimation within a Bayesian inference framework and the application of such algorithms in analyzing real-world data. Please see my personal website for more information.

Germano S. Iannacchione

Germano S. Iannacchione

Professor

Germano Iannacchione is a Professor in the Physics Department at WPI, joining the faculty in August 1998.  He and his students conduct experimental research on order-disorder phenomena in condensed matter, with a focus on soft-matter materials, colloids/composites, and emergence far-from-equilibrium.  He has graduated 10 Ph.D., 14 M.Sc., and 121 B.Sc. (senior thesis) physics students over the 22 years at WPI. 

George A. Kaminski

George A. Kaminski

Associate Professor

I am a computational physical chemist. My research is in the areas of force field building and applications. Special attention is given to creating polarizable force fields for organic and biophysical systems, including proteins and protein-ligand complexes. I teach classes in physical, computational and general chemistry. Simulations of proteins is very important in biomedical research because proteins play crucial role in a large number of biological phenomena, both benign and harmful.

Sarah D Olson

Sarah Olson

Professor & Department Head-Mathematical Science

At WPI, I enjoy teaching all courses fundamental to applied mathematics, scientific computing, and modeling. I look forward to mentoring students interested in working on areas in Mathematical Biology, Computational Biofluids, and Scientific Computing. I specialize in Mathematical Biology, understanding emergent properties of complex systems. The goals of these models are to understand the underlying biological processes and make predictions. Please visit my website to learn more about recent research projects.

Suzanne Frances Scarlata

Suzanne Frances Scarlata

Professor

We are interested in learning how small molecules in the blood stream can cause cells to react in specific ways, such as growing, dividing or migrating. While there are many agents that can stimulate or inhibit cell behavior, we are most interested in the ability of certain hormones and neurotransmitters to activate a family of proteins called "G Proteins". G proteins can simulate an enzyme called phospholipase Cbeta (PLCbeta). Activation of PLCbeta raises the level of calcium in the cell, which changes the activity of many other proteins.

Kun-Ta  Wu

Kun-Ta Wu

Assistant Professor

Kun-Ta Wu is an assistant professor of physics. Before joining WPI, he was a physics lecturer at Brandeis University, where he had previously been a postdoctoral associate. In his research, he investigates interactions among miscellaneous DNA and proteins. He uses proteins such as molecular motors to generate dynamics, as well as DNA to create specific, thermal-reversible interactions. With DNA and proteins, his goal is to advance our understanding of self-organization of active matter as well as to create new bio-inspired materials. He earned a PhD in physics at New York University.

Min  Wu

Min Wu

Assistant Professor-Mathematical Science

My research involves analysing size and shape development in biological processes. The form of living systems can be affected by growth and internal force, so it is important to know how they are patterned spatial-temporally. To do this, I develop deterministic approximate inference schemes using static and live imaging data; and develop mathematical models and numerical methods to describe tissue growth and morphogenesis. My research at WPI has attracted interest from all levels of students, and they have become enthusiastic and creative contributors.